forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_fake_tensor.py
1128 lines (970 loc) · 42.3 KB
/
test_fake_tensor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Owner(s): ["module: meta tensors"]
from torch.testing._internal.common_utils import (
TestCase, run_tests, skipIfCrossRef, skipIfRocm, skipIfTorchDynamo, parametrize,
instantiate_parametrized_tests)
import torch
import torch._dynamo
import itertools
import numpy as np
from torch.testing._internal.jit_utils import RUN_CUDA
from torch._subclasses.fake_tensor import (
FakeTensor,
FakeTensorMode,
FakeTensorConverter,
DynamicOutputShapeException,
UnsupportedOperatorException,
)
from torch.testing._internal.custom_op_db import custom_op_db
from torch.testing._internal.common_device_type import ops
from torch.testing._internal.common_device_type import instantiate_device_type_tests, OpDTypes
from torch.fx.passes.fake_tensor_prop import FakeTensorProp
from torch._dynamo.testing import rand_strided
from torch.testing import FileCheck
from torch import nn
import unittest
import torch._prims as prims
import contextlib
import weakref
import copy
import torch._functorch.config
import torch.testing._internal.optests as optests
from unittest.mock import patch
from torch import distributed as dist
from torch.utils._mode_utils import no_dispatch
from torch.utils._python_dispatch import TorchDispatchMode
from torch.utils._pytree import tree_flatten
class FakeTensorTest(TestCase):
def checkType(self, t, device_str, size):
self.assertTrue(isinstance(t, FakeTensor))
self.assertEqual(t.device.type, device_str)
self.assertEqual(list(t.size()), size)
@unittest.skipIf(not RUN_CUDA, "requires cuda")
def test_cuda_initialized(self):
# doesnt error
with FakeTensorMode():
p = torch.randn(4, 2, requires_grad=True, device='cuda')
x = torch.randn(8, 4, device='cuda')
y = torch.mm(x, p).square().sum()
y.backward()
def test_basic(self):
x = torch.empty(2, 2, device="cpu")
y = torch.empty(4, 2, 2, device="cpu")
with FakeTensorMode() as mode:
x = mode.from_tensor(x)
y = mode.from_tensor(y)
z = x + y
self.assertEqual(z.shape, (4, 2, 2))
self.assertEqual(z.device, torch.device("cpu"))
self.assertTrue(isinstance(z, FakeTensor))
def test_basic_forced_memo_only(self):
x = torch.empty(2, 2, device="cpu")
y = torch.empty(4, 2, 2, device="cpu")
with FakeTensorMode() as mode:
x_fake = mode.from_tensor(x)
x2 = mode.from_tensor(x, memoized_only=True)
self.assertTrue(x2 is not None)
y = mode.from_tensor(y, memoized_only=True)
self.assertIs(y, None)
def test_custom_op_fallback(self):
from torch.library import Library, impl
test_lib = Library("my_test_op", "DEF")
test_lib.define('foo(Tensor self) -> Tensor')
@impl(test_lib, 'foo', 'CPU')
def foo_impl(self):
return self.cos()
x = torch.empty(2, 2, device="cpu")
with self.assertRaisesRegex(UnsupportedOperatorException, "my_test_op.foo.default"):
with FakeTensorMode(allow_fallback_kernels=True) as mode:
x = mode.from_tensor(x)
torch.ops.my_test_op.foo(x)
def test_parameter_instantiation(self):
with FakeTensorMode():
x = torch.rand([4])
y = torch.nn.parameter.Parameter(x)
self.assertTrue(isinstance(y, torch.nn.Parameter))
@unittest.skipIf(not dist.is_available(), "requires distributed")
def test_fsdp_flat_param(self):
from torch.distributed.fsdp.flat_param import FlatParameter
with FakeTensorMode() as m:
data = torch.randn(2, 2)
param = FlatParameter(data, requires_grad=True)
self.assertIsInstance(param, FlatParameter)
self.assertIsInstance(param, torch.nn.Parameter)
self.assertIsInstance(param, FakeTensor)
def test_non_parameter_grad(self):
mode = FakeTensorMode()
t = torch.rand([4], requires_grad=True)
fake_t = mode.from_tensor(t)
self.assertEqual(fake_t.requires_grad, t.requires_grad)
@unittest.skipIf(not RUN_CUDA, "requires cuda")
def test_index_cuda_with_cpu(self):
with FakeTensorMode():
x = torch.rand([2048], device='cuda')
out = x[torch.zeros([36], dtype=torch.int64)]
self.checkType(out, "cuda", [36])
@unittest.skipIf(not RUN_CUDA, "requires cuda")
def test_shape_take_not_device(self):
with FakeTensorMode():
x = torch.empty(1, device="cpu")
y = torch.empty(8, 8, device="cuda")
out = x.resize_as_(y)
self.assertEqual(out.shape, (8, 8))
self.assertEqual(out.device.type, "cpu")
self.assertTrue(isinstance(out, FakeTensor))
def test_repr(self):
with FakeTensorMode():
x = torch.empty(2, 2, device="cpu")
self.assertEqual(repr(x), 'FakeTensor(..., size=(2, 2))')
x = torch.empty(2, 2, device="meta")
self.assertEqual(repr(x), "FakeTensor(..., device='meta', size=(2, 2))")
@unittest.skipIf(not RUN_CUDA, "requires cuda")
def test_zero_dim(self):
with FakeTensorMode() as mode:
x = torch.tensor(0.)
y = torch.rand([4, 4], device="cuda")
out = x + y
self.assertEqual(out.shape, (4, 4))
self.assertEqual(out.device, y.device)
self.assertTrue(isinstance(out, FakeTensor))
def test_nan_to_num(self):
with FakeTensorMode():
for dtype in [torch.float16, torch.float32]:
x = torch.rand([4], dtype=dtype)
y = torch.nan_to_num(x, nan=None)
z = torch.nan_to_num(x, 0.0)
self.assertEqual(dtype, y.dtype)
self.assertEqual(dtype, z.dtype)
@unittest.skipIf(not RUN_CUDA, "requires cuda")
def test_throw(self):
x = torch.tensor(0.) # TODO: tensor() errors
with FakeTensorMode() as mode:
x_conv = mode.from_tensor(x)
y = torch.rand([4, 4], device="cuda")
z = torch.rand([4, 4], device="cpu")
self.assertRaises(Exception, lambda: torch.lerp(x_conv, y, z))
@unittest.skipIf(not RUN_CUDA, "requires cuda")
def test_type_as(self):
with FakeTensorMode():
x = torch.rand([16, 1], device="cpu")
y = torch.rand([4, 4], device="cuda")
out = x.type_as(y)
self.assertEqual(out.device.type, "cuda")
self.assertTrue(isinstance(out, FakeTensor))
@unittest.skipIf(not RUN_CUDA, "requires cuda")
def test_setitem(self):
for device in ["cpu", "cuda"]:
with FakeTensorMode():
x = torch.rand([16, 1], device=device)
x[..., 0] = 0
def test_fake_dispatch_keys(self):
with FakeTensorMode():
x = torch.rand([4])
f = FileCheck().check("CPU").check("ADInplaceOrView").check("AutogradCPU").check("AutocastCPU")
f.run(torch._C._dispatch_key_set(x))
with torch.inference_mode():
x = torch.rand([4])
y = x + x
FileCheck().check("CPU").check("AutocastCPU").run(torch._C._dispatch_key_set(y))
FileCheck().check_not("ADInplaceOrView").check_not("Autograd").run(torch._C._dispatch_key_set(y))
def test_constructor(self):
with FakeTensorMode():
x = torch.rand([4, 4], device="cpu")
self.assertTrue(isinstance(x, FakeTensor))
self.assertTrue(x.device.type == "cpu")
def test_mode(self):
with FakeTensorMode():
y = torch.rand([4], device="cpu")
out = y + y
self.assertTrue(isinstance(out, FakeTensor))
def check_function_with_fake(self, fn):
out = fn()
with torch._subclasses.FakeTensorMode():
out_fake = fn()
for a, b in zip(tree_flatten(out), tree_flatten(out_fake)):
if not isinstance(a, FakeTensor):
self.assertTrue(not isinstance(b, FakeTensor))
continue
prims.utils.compare_tensor_meta(a, b, check_strides=True)
@unittest.skipIf(not RUN_CUDA, "requires cuda")
def test_non_kwarg_device(self):
with FakeTensorMode():
x = torch.rand([16, 1], device="cpu")
y = x.to(torch.device("cpu"))
self.assertIs(x, y)
z = x.to(torch.device("cuda"))
self.assertEqual(z.device.type, "cuda")
def test_non_overlapping_stride_zero(self):
def foo():
x = torch.empty_strided([1, 3, 427, 640], (0, 1, 1920, 3))
return x.half()
self.check_function_with_fake(foo)
def test_fake_mode_error(self):
x = torch.rand([4, 4])
with self.assertRaisesRegex(Exception, "Please convert all Tensors"):
with FakeTensorMode():
y = x[0]
def test_fake_grad_copy(self):
x = torch.rand([4, 4], requires_grad=True)
x.grad = torch.rand([4, 4])
mode = FakeTensorMode()
fake_x = mode.from_tensor(x)
prims.utils.compare_tensor_meta(fake_x, x)
prims.utils.compare_tensor_meta(fake_x.grad, x.grad)
self.assertTrue(isinstance(fake_x.grad, FakeTensor))
@unittest.skipIf(not RUN_CUDA, "requires cuda")
def test_like_constructor(self):
with FakeTensorMode():
x = torch.rand([4, 4])
y = torch.ones_like(x)
self.assertTrue(isinstance(y, FakeTensor))
self.assertEqual(y.device.type, "cpu")
z = torch.ones_like(x, device="cuda")
self.assertTrue(isinstance(z, FakeTensor))
self.assertEqual(z.device.type, "cuda")
def test_binary_op_type_promotion(self):
with FakeTensorMode():
x = torch.empty([2, 2], dtype=torch.float)
y = torch.empty([2, 2], dtype=torch.int64)
out = x / y
self.assertEqual(out.dtype, torch.float)
self.assertEqual(out.device.type, "cpu")
def test_from_numpy(self):
with FakeTensorMode():
x = torch.tensor(np.zeros([4, 4]))
self.checkType(x, "cpu", [4, 4])
def test_randperm(self):
x = torch.randperm(10)
y = torch.randperm(5, device="cpu")
with FakeTensorMode():
x1 = torch.randperm(10)
prims.utils.compare_tensor_meta(x, x1)
y1 = torch.randperm(5, device="cpu")
prims.utils.compare_tensor_meta(y, y1)
def test_print_in_fake_mode(self):
x = torch.zeros(2)
# does not fail
with FakeTensorMode():
out = str(x)
assert "FakeTensor" not in out
@unittest.skipIf(not RUN_CUDA, "requires cuda")
def test_upsample_bilinear_small_channels(self):
out = []
mode = FakeTensorMode()
for i, context in enumerate([contextlib.nullcontext, lambda: mode]):
with context():
arg0_1 = torch.empty_strided((3, 427, 640), (1, 1920, 3), dtype=torch.float32, device='cuda')
unsqueeze = torch.ops.aten.unsqueeze.default(arg0_1, 0)
out.append(torch.ops.aten.upsample_bilinear2d.default(unsqueeze, [800, 1199], False))
self.assertTrue(out[1].is_contiguous())
self.checkMetaProps(out[0], out[1])
@unittest.skipIf(not RUN_CUDA, "requires cuda")
def test_cpu_fallback(self):
with FakeTensorMode(allow_fallback_kernels=False):
filters = torch.randn(8, 4, 3, 3).cuda()
inputs = torch.randn(1, 4, 5, 5).cuda()
out = torch.nn.functional.conv2d(inputs, filters, padding=1)
self.assertEqual(out.device.type, "cuda")
self.assertEqual(list(out.size()), [1, 8, 5, 5])
with FakeTensorMode(allow_fallback_kernels=True):
# intentionally bad inputs
filters = torch.randn(8, 20, 3, 3).cuda()
inputs = torch.randn(1, 7, 10, 5).cuda()
with self.assertRaises(RuntimeError):
torch.nn.functional.conv2d(inputs, filters, padding=1)
with FakeTensorMode(allow_fallback_kernels=True):
filters = torch.randn(8, 4, 3, 3).cuda()
inputs = torch.randn(1, 4, 5, 5).cuda()
out = torch.nn.functional.conv2d(inputs, filters, padding=1)
self.assertEqual(out.device.type, "cuda")
self.assertEqual(list(out.size()), [1, 8, 5, 5])
@unittest.skipIf(not RUN_CUDA, "requires cuda")
def test_out_multi_device(self):
with FakeTensorMode():
x = torch.rand([4])
y = torch.rand([4], device="cuda")
with self.assertRaisesRegex(Exception, "found two different devices"):
torch.sin(x, out=y)
with self.assertRaisesRegex(Exception, "found two different devices"):
x.add_(y)
@unittest.skipIf(not RUN_CUDA, "requires cuda")
def test_normalize_device(self):
with FakeTensorMode():
x = torch.empty(1, device="cuda")
y = torch.empty(1, device=f"cuda:{torch.cuda.current_device()}")
out = x + y
self.checkType(out, "cuda", [1])
def test_recursive_invocation(self):
mode = FakeTensorMode()
with mode:
x = torch.tensor(2)
mode.in_kernel_invocation = True
y = x + x
self.assertTrue(mode.in_kernel_invocation)
@skipIfRocm
@parametrize("allow_fallback_kernels", [False, True],
lambda a: 'with_fallback' if a else 'without_fallback')
@unittest.skipIf(not RUN_CUDA, "requires cuda")
def test_cudnn_rnn(self, allow_fallback_kernels):
def fn(
a0,
b0,
b1,
b2,
b3,
b4,
b5,
b6,
b7,
b8,
b9,
b10,
b11,
b12,
b13,
b14,
b15,
a3,
a4,
a5,
):
a1 = [
b0,
b1,
b2,
b3,
b4,
b5,
b6,
b7,
b8,
b9,
b10,
b11,
b12,
b13,
b14,
b15,
]
return torch.ops.aten._cudnn_rnn(
a0,
a1,
4,
a3,
a4,
a5,
2,
2048,
0,
2,
False,
0.0,
False,
True,
[],
None,
)
mode = FakeTensorMode(allow_fallback_kernels=allow_fallback_kernels)
for i, context in enumerate([contextlib.nullcontext, lambda: mode]):
with context():
inps1 = [
torch.randn([92, 8, 2048]).cuda(),
torch.randn([8192, 2048]).cuda(),
torch.randn([8192, 2048]).cuda(),
torch.randn([8192]).cuda(),
torch.randn([8192]).cuda(),
torch.randn([8192, 2048]).cuda(),
torch.randn([8192, 2048]).cuda(),
torch.randn([8192]).cuda(),
torch.randn([8192]).cuda(),
torch.randn([8192, 4096]).cuda(),
torch.randn([8192, 2048]).cuda(),
torch.randn([8192]).cuda(),
torch.randn([8192]).cuda(),
torch.randn([8192, 4096]).cuda(),
torch.randn([8192, 2048]).cuda(),
torch.randn([8192]).cuda(),
torch.randn([8192]).cuda(),
torch.randn([167837696]).cuda(),
torch.randn([4, 8, 2048]).cuda(),
torch.randn([4, 8, 2048]).cuda(),
]
inps2 = inps1
inps2[len(inps2) - 1] = None # argument `cx` can be None
for inps in [inps1, inps2]:
out = fn(*inps)
self.assertIs(out[4], inps[-3])
for ten in out:
if i == 1:
self.assertTrue(isinstance(ten, FakeTensor))
self.assertEqual(ten.device.type, 'cuda')
@unittest.skipIf(not RUN_CUDA, "requires cuda")
def test_cuda_lstm(self):
# Ensure CUDA (non-cuDNN) impl succeeds with fake tensors.
with torch.backends.cudnn.flags(enabled=False):
fake_tensor_mode = FakeTensorMode(allow_fallback_kernels=False)
with fake_tensor_mode:
N = 5
L = 4
H_in = 2
hidden_size = 3
proj_size = 2
num_layers = 2
bidir = False
D = 2 if bidir else 1
H_out = proj_size if proj_size > 0 else hidden_size
lstm = torch.nn.LSTM(input_size=H_in, hidden_size=hidden_size,
num_layers=num_layers, proj_size=proj_size, batch_first=False,
bias=True, bidirectional=bidir, device='cuda')
h_0 = torch.randn((num_layers * D, N, H_out), device='cuda')
c_0 = torch.randn((num_layers * D, N, hidden_size), device='cuda')
inp = torch.randn((L, N, H_in), device='cuda')
(output, (h_n, c_n)) = lstm(inp, (h_0, c_0))
output.sum().backward()
self.assertEqual(output.shape, (L, N, D * H_out))
self.assertEqual(h_n.shape, (D * num_layers, N, H_out))
self.assertEqual(c_n.shape, (D * num_layers, N, hidden_size))
@skipIfRocm
@unittest.skipIf(not RUN_CUDA, "requires cuda")
def test_fallback_memory_prop(self):
m = nn.Conv2d(16, 33, 3, stride=2, device="cuda", dtype=torch.half)
m = m.to(memory_format=torch.channels_last)
mode = FakeTensorMode()
# TODO: module.to() doesn't work because it assigns .data, which is ignored
with torch._subclasses.fake_tensor.FakeCopyMode(mode):
mod_copied = copy.deepcopy(m)
with mode:
input = torch.rand(20, 16, 50, 100, dtype=torch.half, device="cuda").to(memory_format=torch.channels_last)
out = mod_copied(input)
self.assertTrue(out.is_contiguous(memory_format=torch.channels_last))
self.checkType(out, "cuda", [20, 33, 24, 49])
def test_data_dependent_operator(self):
with FakeTensorMode(allow_fallback_kernels=False):
x = torch.rand([10, 10])
self.assertRaises(DynamicOutputShapeException, lambda: torch.nonzero(x))
def checkMetaProps(self, t1, t2):
prims.utils.compare_tensor_meta(t1, t2, check_strides=True)
@skipIfCrossRef
def test_deepcopy(self):
with FakeTensorMode() as mode:
pass
mod = torch.nn.BatchNorm2d(10)
with torch._subclasses.fake_tensor.FakeCopyMode(mode):
mod_copied = copy.deepcopy(mod)
def check_copy(mod, mod_copied):
for name, param in itertools.chain(mod.named_parameters(), mod.named_buffers()):
param_copied = getattr(mod_copied, name)
self.checkMetaProps(param, param_copied)
self.assertTrue(isinstance(param_copied, FakeTensor))
self.assertEqual(isinstance(param, torch.nn.Parameter), isinstance(param_copied, torch.nn.Parameter))
self.assertEqual(param.requires_grad, param_copied.requires_grad)
check_copy(mod, mod_copied)
class ModuleNew(torch.nn.Module):
def __init__(self):
super().__init__()
self.a = torch.rand([10, 2])
self.b = self.a
self.c = self.a[0]
mod = ModuleNew()
with torch._subclasses.fake_tensor.FakeCopyMode(mode):
mod_copied = copy.deepcopy(mod)
self.assertIs(mod_copied.a, mod_copied.b)
self.assertEqual(mod_copied.b.storage()._cdata, mod_copied.a.storage()._cdata)
@unittest.skipIf(not RUN_CUDA, "requires cuda")
def test_new(self):
with FakeTensorMode():
a = torch.rand([16, 1])
self.checkType(a.new(10, 10), "cpu", [10, 10])
self.checkType(a.new([1, 2, 3, 4]), "cpu", [4])
b = torch.rand([4, 4], device='cuda')
self.checkType(b.new(device='cuda'), "cuda", [0])
self.checkType(a.new(torch.rand([1])), "cpu", [1])
def test_scalar_inputs(self):
with FakeTensorMode():
self.checkType(torch.div(3, 2), "cpu", [])
ten = torch.zeros(2, dtype=torch.int32) * 2.0
self.assertEqual(ten.dtype, torch.float)
self.checkType(ten, "cpu", [2])
def test_allow_meta(self):
def run_meta():
with FakeTensorMode():
x = torch.rand([4], device="meta")
return x + x
self.checkType(run_meta(), "meta", [4])
with patch.object(torch._functorch.config, "fake_tensor_allow_meta", False):
self.assertRaises(Exception, run_meta)
def test_mixed_real_and_fake_inputs(self):
class _TestPattern(torch.nn.Module):
def __init__(self):
super().__init__()
self.conv = torch.nn.Conv2d(1, 1, 1)
self.bn = torch.nn.BatchNorm2d(1)
def forward(self, input):
running_std = torch.sqrt(self.bn.running_var + self.bn.eps)
scale_factor = self.bn.weight / running_std
weight_shape = [1] * len(self.conv.weight.shape)
weight_shape[0] = -1
bias_shape = [1] * len(self.conv.weight.shape)
bias_shape[1] = -1
scaled_weight = self.conv.weight * scale_factor.reshape(weight_shape)
zero_bias = torch.zeros_like(self.conv.bias, dtype=input.dtype)
conv = self.conv._conv_forward(input, scaled_weight, zero_bias)
conv_orig = conv / scale_factor.reshape(bias_shape)
conv_orig = conv_orig + self.conv.bias.reshape(bias_shape)
conv = self.bn(conv_orig)
return conv
example_inputs = (torch.randn(1, 1, 3, 3),)
mod = _TestPattern()
with FakeTensorMode(allow_non_fake_inputs=True):
out = mod(torch.randn(1, 1, 3, 3))
self.checkType(out, "cpu", (1, 1, 3, 3))
@unittest.skipIf(not RUN_CUDA, "requires cuda")
def test_aten_copy_multi_device(self):
with FakeTensorMode():
x1 = torch.rand(4, device="cpu")
x2 = torch.rand(4, device="cuda")
copy1 = torch.ops.aten.copy.default(x1, x2)
copy2 = torch.ops.aten.copy.default(x2, x1)
out = torch.empty(4, device="cpu")
torch.ops.aten.copy.out(x1, x2, out=out)
self.checkType(copy1, "cpu", (4,))
self.checkType(copy2, "cuda", (4,))
self.checkType(out, "cpu", (4,))
@unittest.skipIf(not RUN_CUDA, "requires cuda")
def test_aten_index_multi_device(self):
with FakeTensorMode():
x1 = torch.rand(4, 4, device="cpu")
x2 = torch.rand(4, 4, device="cuda")
i1 = torch.tensor([0, 1], device="cuda")
i2 = torch.tensor([0, 1], device="cpu")
r1 = torch.ops.aten.index(x1, i1)
r2 = torch.ops.aten.index(x2, i2)
y1 = torch.rand(4, device="cpu")
y2 = torch.rand(4, device="cuda")
j1 = torch.tensor([2], device="cuda")
j2 = torch.tensor([2], device="cpu")
r3 = torch.ops.aten.index_put.default(x1, j1, y1)
r4 = torch.ops.aten.index_put.default(x2, j2, y2)
self.checkType(r1, "cpu", ())
self.checkType(r2, "cuda", ())
self.checkType(r3, "cpu", (4, 4))
self.checkType(r4, "cuda", (4, 4))
@unittest.skipIf(not RUN_CUDA, "requires cuda")
def test_aten_slice_scatter_multi_device(self):
with FakeTensorMode():
x1 = torch.rand(4, 4, device="cpu")
y1 = torch.rand(2, 4, device="cuda")
x2 = torch.rand(4, 4, device="cuda")
y2 = torch.rand(2, 4, device="cpu")
out = torch.empty(4, 4, device="cpu")
r1 = torch.ops.aten.slice_scatter.default(x1, y1, start=2)
r2 = torch.ops.aten.slice_scatter.default(x2, y2, start=2)
r3 = torch.ops.aten.slice_scatter.out(x1, y1, out=out, start=2)
self.checkType(r1, "cpu", (4, 4))
self.checkType(r2, "cuda", (4, 4))
self.checkType(r3, "cpu", (4, 4))
self.checkType(out, "cpu", (4, 4))
def test__adaptive_avg_pool2d_backward(self):
with FakeTensorMode():
grad_out = torch.rand(2, 3, 4, 4)
inp = torch.rand(2, 3, 4, 4).to(memory_format=torch.channels_last)
grad_in = torch.ops.aten._adaptive_avg_pool2d_backward(grad_out, inp)
self.assertTrue(torch._prims_common.suggest_memory_format(grad_in) == torch.channels_last)
class FakeTensorConstHandling(TestCase):
def assertConst(self, *args):
for arg in args:
self.assertTrue(arg.constant is not None)
def assertNotConst(self, *args):
for arg in args:
self.assertTrue(arg.constant is None)
def test_simple(self):
with FakeTensorMode():
x = torch.tensor(4.)
self.assertEqual(x.item(), 4.)
def test_inplace_add(self):
with FakeTensorMode():
x = torch.tensor(4.)
y = x.add_(1)
self.assertEqual(x.item(), 5.)
self.assertEqual(y.item(), 5.)
self.assertConst(x, y)
def test_shared_storages(self):
with FakeTensorMode():
x = torch.tensor([4.])
y = x[:]
self.assertEqual(x.storage()._cdata, y.storage()._cdata)
self.assertEqual(x.constant.storage()._cdata, y.constant.storage()._cdata)
def test_constant_invalidation(self):
with FakeTensorMode():
x = torch.tensor([1.])
self.assertConst(x)
y = torch.rand([1])
x.add_(y)
self.assertNotConst(x)
def test_inplace_view_invalidation(self):
with FakeTensorMode():
x = torch.tensor([1])
self.assertConst(x)
x.resize_([2])
self.assertEqual(x.size(0), 2)
self.assertNotConst(x)
def test_fake_tensor_in_intlist_repro(self):
def fn(tensors):
max_size = torch.tensor([800, 1216], dtype=torch.int64)
batch_shape = [len(tensors)] + list(tensors[0].shape[:-2]) + list(max_size)
return tensors[0].new_full(batch_shape, 0.0)
with self.assertRaises(torch._subclasses.fake_tensor.DataDependentOutputException):
with torch._subclasses.fake_tensor.FakeTensorMode():
a = torch.randn(3, 800, 1199)
b = torch.randn(3, 800, 800)
inputs = [a, b]
ref = fn(inputs)
def test_fake_tensor_batch_norm_cpu(self):
with torch._subclasses.CrossRefFakeMode():
m = torch.nn.Sequential(
torch.nn.BatchNorm2d(10),
torch.nn.ReLU(),
)
m.eval()
out = m(torch.randn([2, 10, 8, 8]))
def test_shared_storage_invalidation(self):
with FakeTensorMode():
x = torch.tensor([1.])
y = x[:]
self.assertConst(x, y)
y.add_(torch.rand([1]))
self.assertNotConst(x, y)
def test_aliased_const_write(self):
with FakeTensorMode():
x = torch.tensor([1])
y = x.expand([4])
self.assertNotConst(y)
y[0] = 1
self.assertNotConst(x)
def test_constant_propagate_through_functions(self):
with FakeTensorMode():
y = torch.div(4, 4, rounding_mode='trunc')
self.assertConst(y)
def contains_type(type: torch._C.Type, maybe_contained_type: torch._C.Type):
return maybe_contained_type.isSubtypeOf(type) or any(
contains_type(e, maybe_contained_type) for e in type.containedTypes()
)
class FakeTensorOpInfoTest(TestCase):
@ops(custom_op_db, dtypes=OpDTypes.any_one)
def test_fake(self, device, dtype, op):
data_dependent_outputs = {
'NumpyNMSCustomOp',
'NumpyNonzeroCustomOp',
}
sample_inputs_itr = op.sample_inputs(device, dtype, requires_grad=False)
for sample_input in sample_inputs_itr:
args = (sample_input.input,) + sample_input.args
kwargs = sample_input.kwargs
optests.fake_check(op, args, kwargs, op.name in data_dependent_outputs)
class FakeTensorConverterTest(TestCase):
def test_memoized_conversion_to_meta(self):
x = torch.rand(2, 2, 2)
mode = FakeTensorMode()
self.assertTrue(mode.from_tensor(x) is mode.from_tensor(x))
def test_memoized_conversion_from_meta(self):
x = torch.rand(2, 2).to(device="meta")
mode = FakeTensorMode()
converter = mode.fake_tensor_converter
self.assertTrue(converter.from_meta_and_device(mode, x, "cpu") is converter.from_meta_and_device(mode, x, "cpu"))
def test_separate_tensor_storages_view(self):
x = torch.rand(2, 2, 2)
y = x[0]
mode = FakeTensorMode()
converter = mode.fake_tensor_converter
x_conv = converter(mode, x)
y_conv = converter(mode, y)
self.assertEqual(torch._C._storage_id(x_conv), torch._C._storage_id(y_conv))
@skipIfTorchDynamo("https://github.com/pytorch/torchdynamo/issues/1991")
def test_separate_tensor_storages_non_view(self):
x = torch.rand(2, 2, 2)
y = torch.rand(4, 2)
y.set_(x.storage())
mode = FakeTensorMode()
converter = mode.fake_tensor_converter
x_conv = converter(mode, x)
y_conv = converter(mode, y)
stor_id = torch._C._storage_id(x_conv)
self.assertEqual(stor_id, torch._C._storage_id(y_conv))
del x
self.assertEqual(len(converter.tensor_memo), 1)
converter.meta_converter.check_for_expired_weak_storages()
self.assertEqual(len(converter.meta_converter.storage_memo), 1)
del y
self.assertEqual(len(converter.tensor_memo), 0)
converter.meta_converter.check_for_expired_weak_storages()
self.assertEqual(len(converter.meta_converter.storage_memo), 0)
@skipIfTorchDynamo("https://github.com/pytorch/torchdynamo/issues/1991")
def test_dead_weak_ref(self):
x = torch.rand(2, 2, 2)
y = x[0]
mode = FakeTensorMode()
converter = FakeTensorConverter()
x_conv = converter(mode, x)
x_conv_storage = torch._C._storage_id(x_conv)
del x_conv
self.assertFalse(x in converter.tensor_memo)
y_conv = converter(mode, y)
self.assertEqual(x_conv_storage, torch._C._storage_id(y_conv))
@skipIfTorchDynamo("https://github.com/pytorch/torchdynamo/issues/1991")
def test_dead_key(self):
x = torch.rand(2, 2, 2)
mode = FakeTensorMode()
converter = FakeTensorConverter()
x_conv = converter(mode, x)
self.assertEqual(len(converter.tensor_memo), 1)
x_conv2 = converter(mode, x)
assert x_conv2 is x_conv
del x
self.assertEqual(len(converter.tensor_memo), 0)
def test_no_active_mode(self):
with FakeTensorMode() as mode:
x = torch.empty(2, 2, device="cpu")
y = torch.empty(2, 2, device="cpu")
out = x + y
self.assertEqual(mode, out.fake_mode)
self.assertTrue(isinstance(out, FakeTensor))
self.assertEqual(out.device.type, "cpu")
def test_multiple_modes(self):
t = torch.rand(([4]))
t2 = torch.rand([4])
with FakeTensorMode() as m:
with FakeTensorMode() as m2:
t_fake = m.from_tensor(t)
t2_fake = m2.from_tensor(t2)
with self.assertRaisesRegex(Exception, "Mixing fake modes"):
t_fake + t2_fake
def test_separate_mode_error(self):
with FakeTensorMode():
x = torch.empty(2, 2, device="cpu")
with FakeTensorMode():
y = torch.empty(2, 2, device="cpu")
self.assertRaises(Exception, lambda: x, y)
@skipIfTorchDynamo("https://github.com/pytorch/torchdynamo/issues/1991")
def test_no_ref_cycle(self):
x = torch.rand([4])
mode = FakeTensorMode()
y = mode.from_tensor(x)
self.assertEqual(len(mode.fake_tensor_converter.tensor_memo), 1)
mode_weak = weakref.ref(mode)
y_weak = weakref.ref(mode)
del mode
del y
assert mode_weak() is None
assert y_weak() is None
class FakeTensorOperatorInvariants(TestCase):
@staticmethod
def get_aten_op(schema):
namespace, name = schema.name.split("::")
overload = schema.overload_name if schema.overload_name else "default"
assert namespace == "aten"
return getattr(getattr(torch.ops.aten, name), overload)
@staticmethod
def get_all_aten_schemas():
for schema in torch._C._jit_get_all_schemas():
namespace = schema.name.split("::")[0]
if namespace != "aten":
continue
yield schema
def test_non_kwarg_only_device(self):
for schema in self.get_all_aten_schemas():
ten_type = torch._C.TensorType.get()
if not any(
contains_type(arg.type, ten_type)
for arg in itertools.chain(schema.arguments, schema.returns)
):
continue
opt_device = torch._C.OptionalType(torch._C.DeviceObjType.get())
has_non_kwarg_device = any(
not arg.kwarg_only and arg.type.isSubtypeOf(opt_device)
for arg in schema.arguments
)
if has_non_kwarg_device:
self.assertTrue(
self.get_aten_op(schema) in torch._subclasses.fake_tensor._device_not_kwarg_ops
)
def test_tensor_constructors_all_have_kwarg_device(self):
for schema in self.get_all_aten_schemas():
op = self.get_aten_op(schema)
if not torch._subclasses.fake_tensor._is_tensor_constructor(op):
continue
opt_device = torch._C.OptionalType(torch._C.DeviceObjType.get())
has_kwarg_device = any(
arg.kwarg_only and arg.type.isSubtypeOf(opt_device)
for arg in schema.arguments
)
self.assertTrue(
has_kwarg_device or op == torch.ops.aten._list_to_tensor.default
)
@unittest.expectedFailure
def test_sparse_new(self):
with FakeTensorMode():
indices = torch.randn(1, 1, dtype=torch.int64)
values = torch.randn(1)
extra = (2,)
sparse = torch.randn(1).to_sparse()
# This used to segfault, now it does not, but it still raises an
# error
sparse2 = sparse.new(indices, values, extra)
def test_tensor_new(self):
with FakeTensorMode():
x = torch.Tensor([1, 2, 3])
self.assertIsInstance(x, FakeTensor)
def test_like_ops(self):
for schema in self.get_all_aten_schemas():
if "_like" == schema.name[-5:]:
op = self.get_aten_op(schema)
self.assertIn(op, torch._subclasses.fake_tensor._like_tensor_constructors)
# at::_embedding_bag has no op info,
# and returns extra tensors that at::embedding bag throws away
def test_embedding_bag_private(self):
args = [
torch.ones(6, 1),
torch.ones(6, dtype=torch.int64),
torch.arange(2, dtype=torch.int64),
False,
2, # mode = max
]
ref_out = torch.ops.aten._embedding_bag(*args)
with FakeTensorMode() as m:
meta_args = [m.from_tensor(a) if isinstance(a, torch.Tensor) else a for a in args]
meta_out = torch.ops.aten._embedding_bag(*meta_args)
self.assertEqual(len(ref_out), len(meta_out))
for ref_o, meta_o in zip(ref_out, meta_out):
self.assertEqual(ref_o.size(), meta_o.size())
def test_cross_entropy_loss(self):
inp = torch.randn(3, 5)
target = torch.randint(5, (3,), dtype=torch.long)
weight = torch.rand(5)
fn = torch.nn.functional.cross_entropy
for w in (weight, None):
args = (inp, target, w)
ref = fn(*args)
with FakeTensorMode() as m:
meta_args = [m.from_tensor(a) if isinstance(a, torch.Tensor) else a for a in args]
meta_out = torch.nn.functional.cross_entropy(*meta_args, label_smoothing=0.5)
self.assertEqual(ref.size(), meta_out.size())
@skipIfRocm
@unittest.skipIf(not RUN_CUDA, "requires cuda")
def test_conv_c1_backward(self):
class Repro(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, arg1, arg2, arg3):
torch.ops.aten.convolution_backward.default(
arg1,
arg2,
arg3,
[1],