.. currentmodule:: torch
Each torch.Tensor
has a :class:`torch.dtype`, :class:`torch.device`, and :class:`torch.layout`.
A :class:`torch.dtype` is an object that represents the data type of a :class:`torch.Tensor`. PyTorch has twelve different data types:
Data type | dtype | Legacy Constructors |
---|---|---|
32-bit floating point | torch.float32 or torch.float |
torch.*.FloatTensor |
64-bit floating point | torch.float64 or torch.double |
torch.*.DoubleTensor |
64-bit complex | torch.complex64 or torch.cfloat |
|
128-bit complex | torch.complex128 or torch.cdouble |
|
16-bit floating point [1] | torch.float16 or torch.half |
torch.*.HalfTensor |
16-bit floating point [2] | torch.bfloat16 |
torch.*.BFloat16Tensor |
8-bit integer (unsigned) | torch.uint8 |
torch.*.ByteTensor |
8-bit integer (signed) | torch.int8 |
torch.*.CharTensor |
16-bit integer (signed) | torch.int16 or torch.short |
torch.*.ShortTensor |
32-bit integer (signed) | torch.int32 or torch.int |
torch.*.IntTensor |
64-bit integer (signed) | torch.int64 or torch.long |
torch.*.LongTensor |
Boolean | torch.bool |
torch.*.BoolTensor |
[1] | Sometimes referred to as binary16: uses 1 sign, 5 exponent, and 10 significand bits. Useful when precision is important. |
[2] | Sometimes referred to as Brain Floating Point: use 1 sign, 8 exponent and 7
significand bits. Useful when range is important, since it has the same
number of exponent bits as float32 |
To find out if a :class:`torch.dtype` is a floating point data type, the property :attr:`is_floating_point`
can be used, which returns True
if the data type is a floating point data type.
To find out if a :class:`torch.dtype` is a complex data type, the property :attr:`is_complex`
can be used, which returns True
if the data type is a complex data type.
When the dtypes of inputs to an arithmetic operation (add, sub, div, mul) differ, we promote by finding the minimum dtype that satisfies the following rules:
- If the type of a scalar operand is of a higher category than tensor operands (where complex > floating > integral > boolean), we promote to a type with sufficient size to hold all scalar operands of that category.
- If a zero-dimension tensor operand has a higher category than dimensioned operands, we promote to a type with sufficient size and category to hold all zero-dim tensor operands of that category.
- If there are no higher-category zero-dim operands, we promote to a type with sufficient size and category to hold all dimensioned operands.
A floating point scalar operand has dtype torch.get_default_dtype() and an integral non-boolean scalar operand has dtype torch.int64. Unlike numpy, we do not inspect values when determining the minimum dtypes of an operand. Quantized and complex types are not yet supported.
Promotion Examples:
>>> float_tensor = torch.ones(1, dtype=torch.float) >>> double_tensor = torch.ones(1, dtype=torch.double) >>> complex_float_tensor = torch.ones(1, dtype=torch.complex64) >>> complex_double_tensor = torch.ones(1, dtype=torch.complex128) >>> int_tensor = torch.ones(1, dtype=torch.int) >>> long_tensor = torch.ones(1, dtype=torch.long) >>> uint_tensor = torch.ones(1, dtype=torch.uint8) >>> double_tensor = torch.ones(1, dtype=torch.double) >>> bool_tensor = torch.ones(1, dtype=torch.bool) # zero-dim tensors >>> long_zerodim = torch.tensor(1, dtype=torch.long) >>> int_zerodim = torch.tensor(1, dtype=torch.int) >>> torch.add(5, 5).dtype torch.int64 # 5 is an int64, but does not have higher category than int_tensor so is not considered. >>> (int_tensor + 5).dtype torch.int32 >>> (int_tensor + long_zerodim).dtype torch.int32 >>> (long_tensor + int_tensor).dtype torch.int64 >>> (bool_tensor + long_tensor).dtype torch.int64 >>> (bool_tensor + uint_tensor).dtype torch.uint8 >>> (float_tensor + double_tensor).dtype torch.float64 >>> (complex_float_tensor + complex_double_tensor).dtype torch.complex128 >>> (bool_tensor + int_tensor).dtype torch.int32 # Since long is a different kind than float, result dtype only needs to be large enough # to hold the float. >>> torch.add(long_tensor, float_tensor).dtype torch.float32
- When the output tensor of an arithmetic operation is specified, we allow casting to its dtype except that:
- An integral output tensor cannot accept a floating point tensor.
- A boolean output tensor cannot accept a non-boolean tensor.
- A non-complex output tensor cannot accept a complex tensor
Casting Examples:
# allowed: >>> float_tensor *= float_tensor >>> float_tensor *= int_tensor >>> float_tensor *= uint_tensor >>> float_tensor *= bool_tensor >>> float_tensor *= double_tensor >>> int_tensor *= long_tensor >>> int_tensor *= uint_tensor >>> uint_tensor *= int_tensor # disallowed (RuntimeError: result type can't be cast to the desired output type): >>> int_tensor *= float_tensor >>> bool_tensor *= int_tensor >>> bool_tensor *= uint_tensor >>> float_tensor *= complex_float_tensor
A :class:`torch.device` is an object representing the device on which a :class:`torch.Tensor` is or will be allocated.
The :class:`torch.device` contains a device type ('cpu'
, 'cuda'
or 'mps'
) and optional device
ordinal for the device type. If the device ordinal is not present, this object will always represent
the current device for the device type, even after :func:`torch.cuda.set_device()` is called; e.g.,
a :class:`torch.Tensor` constructed with device 'cuda'
is equivalent to 'cuda:X'
where X is
the result of :func:`torch.cuda.current_device()`.
A :class:`torch.Tensor`'s device can be accessed via the :attr:`Tensor.device` property.
A :class:`torch.device` can be constructed via a string or via a string and device ordinal
Via a string:
>>> torch.device('cuda:0') device(type='cuda', index=0) >>> torch.device('cpu') device(type='cpu') >>> torch.device('mps') device(type='mps') >>> torch.device('cuda') # current cuda device device(type='cuda')
Via a string and device ordinal:
>>> torch.device('cuda', 0) device(type='cuda', index=0) >>> torch.device('mps', 0) device(type='mps', index=0) >>> torch.device('cpu', 0) device(type='cpu', index=0)
The device object can also be used as a context manager to change the default device tensors are allocated on:
>>> with torch.device('cuda:1'): ... r = torch.randn(2, 3) >>> r.device device(type='cuda', index=1)
This context manager has no effect if a factory function is passed an explicit, non-None device argument. To globally change the default device, see also :func:`torch.set_default_device`.
Warning
This function imposes a slight performance cost on every Python call to the torch API (not just factory functions). If this is causing problems for you, please comment on pytorch#92701
Note
The :class:`torch.device` argument in functions can generally be substituted with a string. This allows for fast prototyping of code.
>>> # Example of a function that takes in a torch.device
>>> cuda1 = torch.device('cuda:1')
>>> torch.randn((2,3), device=cuda1)
>>> # You can substitute the torch.device with a string
>>> torch.randn((2,3), device='cuda:1')
Note
For legacy reasons, a device can be constructed via a single device ordinal, which is treated as a cuda device. This matches :meth:`Tensor.get_device`, which returns an ordinal for cuda tensors and is not supported for cpu tensors.
>>> torch.device(1)
device(type='cuda', index=1)
Note
Methods which take a device will generally accept a (properly formatted) string or (legacy) integer device ordinal, i.e. the following are all equivalent:
>>> torch.randn((2,3), device=torch.device('cuda:1'))
>>> torch.randn((2,3), device='cuda:1')
>>> torch.randn((2,3), device=1) # legacy
Warning
The torch.layout
class is in beta and subject to change.
A :class:`torch.layout` is an object that represents the memory layout of a
:class:`torch.Tensor`. Currently, we support torch.strided
(dense Tensors)
and have beta support for torch.sparse_coo
(sparse COO Tensors).
torch.strided
represents dense Tensors and is the memory layout that
is most commonly used. Each strided tensor has an associated
:class:`torch.Storage`, which holds its data. These tensors provide
multi-dimensional, strided
view of a storage. Strides are a list of integers: the k-th stride
represents the jump in the memory necessary to go from one element to the
next one in the k-th dimension of the Tensor. This concept makes it possible
to perform many tensor operations efficiently.
Example:
>>> x = torch.tensor([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]]) >>> x.stride() (5, 1) >>> x.t().stride() (1, 5)
For more information on torch.sparse_coo
tensors, see :ref:`sparse-docs`.
A :class:`torch.memory_format` is an object representing the memory format on which a :class:`torch.Tensor` is or will be allocated.
Possible values are:
torch.contiguous_format
: Tensor is or will be allocated in dense non-overlapping memory. Strides represented by values in decreasing order.torch.channels_last
: Tensor is or will be allocated in dense non-overlapping memory. Strides represented by values instrides[0] > strides[2] > strides[3] > strides[1] == 1
aka NHWC order.torch.channels_last_3d
: Tensor is or will be allocated in dense non-overlapping memory. Strides represented by values instrides[0] > strides[2] > strides[3] > strides[4] > strides[1] == 1
aka NDHWC order.torch.preserve_format
: Used in functions like clone to preserve the memory format of the input tensor. If input tensor is allocated in dense non-overlapping memory, the output tensor strides will be copied from the input. Otherwise output strides will followtorch.contiguous_format