forked from coiled/benchmarks
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dashboard.py
821 lines (724 loc) · 27 KB
/
dashboard.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
from __future__ import annotations
import argparse
import glob
import importlib
import inspect
import math
import operator
import pathlib
from collections.abc import Callable
from textwrap import dedent
from typing import Any, Literal, NamedTuple
from urllib.parse import quote
import altair
import numpy
import pandas
import panel
import sqlalchemy
from bokeh.resources import Resources
from dask.utils import natural_sort_key
CDN = Resources("cdn")
altair.data_transformers.enable("default", max_rows=None)
panel.extension("vega")
class ChartSpec(NamedTuple):
field_name: str
field_desc: str
unit: str
scale: float
SPECS = [
ChartSpec("duration", "Wall Clock", "[s]", 1),
ChartSpec("average_memory", "Average Memory (W)", "[GiB]", 2**30),
ChartSpec("peak_memory", "Peak Memory (W)", "[GiB]", 2**30),
ChartSpec("scheduler_memory_max", "Peak Memory (S)", "[GiB]", 2**30),
ChartSpec("scheduler_cpu_avg", "Avg CPU (S)", "%", 1e-2),
ChartSpec("worker_max_tick", "Max Tick (W)", "[ms]", 1e-3),
ChartSpec("scheduler_max_tick", "Max Tick (S)", "[ms]", 1e-3),
]
OLD_PROMETHEUS_DATASOURCE = "AWS Prometheus - Sandbox (us east 2)"
source: dict[str, str] = {}
def load_test_source() -> None:
"""Crawl the tests directory and try to grab code for each test. This relies on the
tests being importable from this script.
"""
for fname in glob.iglob("tests/**/test_*.py", recursive=True):
try:
mod = importlib.import_module(fname.replace("/", ".")[: -len(".py")])
# Some pytest exceptions inherit directly from BaseException
except BaseException as e:
print(f"Could not import {fname}: {e.__class__.__name__}: {e}")
continue
tests = [a for a in dir(mod) if a.startswith("test_")]
for test in tests:
if (func := getattr(mod, test, None)) and callable(func):
# FIXME missing decorators, namely @pytest.mark.parametrize
source[fname[len("tests/") :] + "::" + test] = inspect.getsource(func)
print(f"Discovered {len(source)} tests")
def calc_ab_confidence_intervals(
df: pandas.DataFrame, field_name: str, A: str, B: str
) -> pandas.DataFrame:
"""Calculate p(B / A - 1) > x and p(B / A - 1) < -x for discrete x, where A and B
are runtimes, for all tests in df.
Algorithm
---------
https://towardsdatascience.com/a-practical-guide-to-a-b-tests-in-python-66666f5c3b02
Returns
-------
DataFrame:
fullname
Test name with category, e.g. bencharks/test_foo.py::test_123[1]
fullname_no_category
Test name without category, e.g. test_foo.py::test_123[1]
x
Confidence interval [-0.5, 0.5]. Note that element 0 will be repeated.
xlabel
"<-{p*100}% | x < 0
">{p*100}% | x > 0
p
p(B/A-1) < x | x < 0
p(B/A-1) > x | x > 0
color
0 if p=1 and x < 0
0.5 if p=0
1 if p=1 and x > 0
plus all shades in between
"""
def bootstrap_mean(df_i: pandas.DataFrame) -> pandas.DataFrame:
boot = df_i[field_name].sample(frac=10_000, replace=True).to_frame()
boot["i"] = pandas.RangeIndex(boot.shape[0]) // df_i.shape[0]
out = boot.groupby("i").mean().reset_index()[[field_name]]
assert out.shape == (10_000, 1)
out.index.name = "bootstrap_run"
return out
# DataFrame with 20,000 rows per test exactly, with columns
# [fullname, fullname_no_category, runtime, bootstrap_run, {field_name}]
bootstrapped = (
df.groupby(["fullname", "fullname_no_category", "runtime"])
.apply(bootstrap_mean)
.reset_index()
)
# DataFrame with 10,000 rows per test exactly, with columns
# [fullname, fullname_no_category, bootstrap_run, {A}, {B}, diff]
pivot = bootstrapped.pivot(
index=["fullname", "fullname_no_category", "bootstrap_run"],
columns="runtime",
values=field_name,
).reset_index()
pivot["diff"] = pivot[B] / pivot[A] - 1
def confidence(
df_i: pandas.DataFrame,
x: numpy.ndarray,
op: Literal["<", ">"],
cmp: Callable[[Any, Any], bool],
color_factor: float,
) -> pandas.DataFrame:
xlabel = [f"{op}{xi * 100:.0f}%" for xi in x]
p = (cmp(df_i["diff"].values.reshape([-1, 1]), x)).sum(axis=0) / df_i.shape[0]
color = color_factor * p / 2 + 0.5
return pandas.DataFrame({"x": x, "xlabel": xlabel, "p": p, "color": color})
pivot_groups = pivot.groupby(["fullname", "fullname_no_category"])[["diff"]]
x_neg = numpy.linspace(-0.8, 0, 17)
x_pos = numpy.linspace(0, 0.8, 17)
conf_neg, conf_pos = (
# DataFrame with 1 row per element of x_neg/x_pos and columns
# [fullname, fullname_no_category, x, xlabel, p, color]
(
pivot_groups.apply(confidence, p, op, cmp, color_factor)
.reset_index()
.drop("level_2", axis=1)
)
for (p, op, cmp, color_factor) in (
(x_neg, "<", operator.lt, -1),
(x_pos, ">", operator.gt, 1),
)
)
return pandas.concat([conf_neg, conf_pos], axis=0)
def make_barchart(
df: pandas.DataFrame,
spec: ChartSpec,
title: str,
) -> tuple[altair.Chart | None, int]:
"""Make a single Altair barchart for a given test or runtime"""
df = df.dropna(subset=[spec.field_name, "start"])
if not len(df):
# Some tests do not have all measures, only runtime
return None, 0
df = df[
[
spec.field_name,
"fullname",
"fullname_no_category",
"dask_version",
"distributed_version",
"runtime",
]
]
tooltip = [
altair.Tooltip("fullname:N", title="Test"),
altair.Tooltip("runtime:N", title="Runtime"),
altair.Tooltip("min(dask_version):N", title="Dask (min)"),
altair.Tooltip("max(dask_version):N", title="Dask (max)"),
altair.Tooltip("min(distributed_version):N", title="Distributed (min)"),
altair.Tooltip("max(distributed_version):N", title="Distributed (max)"),
altair.Tooltip(f"count({spec.field_name}):N", title="Number of runs"),
altair.Tooltip(f"stdev({spec.field_name}):Q", title=f"std dev {spec.unit}"),
altair.Tooltip(f"min({spec.field_name}):Q", title=f"min {spec.unit}"),
altair.Tooltip(f"median({spec.field_name}):Q", title=f"median {spec.unit}"),
altair.Tooltip(f"mean({spec.field_name}):Q", title=f"mean {spec.unit}"),
altair.Tooltip(f"max({spec.field_name}):Q", title=f"max {spec.unit}"),
]
by_test = len(df["fullname"].unique()) == 1
if by_test:
df = df.sort_values("runtime", key=natural_sort_key_pd)
y = altair.Y("runtime", title="Runtime", sort=None)
n_bars = df["runtime"].unique().size
else:
y = altair.Y("fullname_no_category", title="Test name")
n_bars = df["fullname_no_category"].unique().size
height = max(n_bars * 20 + 50, 90)
bars = (
altair.Chart(width=800, height=height)
.mark_bar()
.encode(
x=altair.X(
f"median({spec.field_name}):Q", title=f"{spec.field_desc} {spec.unit}"
),
y=y,
tooltip=tooltip,
)
)
ticks = (
altair.Chart()
.mark_tick(color="black")
.encode(x=f"mean({spec.field_name})", y=y)
)
error_bars = (
altair.Chart().mark_errorbar(extent="stdev").encode(x=spec.field_name, y=y)
)
chart = (
altair.layer(bars, ticks, error_bars, data=df)
.properties(title=title)
.configure(autosize="fit")
)
return chart, height
def make_ab_confidence_map(
df: pandas.DataFrame,
spec: ChartSpec,
title: str,
baseline: str,
) -> tuple[altair.Chart | None, int]:
"""Make a single Altair heatmap of p(B/A - 1) confidence intervals, where B is the
examined runtime and A is the baseline, for all tests for a given measure.
"""
df = df.dropna(subset=[spec.field_name, "start"])
if not len(df):
# Some tests do not have all measures, only runtime
return None, 0
df = df[
[
spec.field_name,
"fullname",
"fullname_no_category",
"runtime",
]
]
runtimes = df["runtime"].unique()
if len(runtimes) < 2 or baseline not in runtimes:
return None, 0
A = baseline
B = next(r for r in runtimes if r != baseline)
conf = calc_ab_confidence_intervals(df, spec.field_name, A, B)
n_bars = df["fullname_no_category"].unique().size
height = max(n_bars * 20 + 50, 90)
chart = (
altair.Chart(conf, width=800, height=height)
.mark_rect()
.encode(
x=altair.X("xlabel:O", title="confidence threshold (B/A - 1)", sort=None),
y=altair.Y(
"fullname_no_category:O", title="", axis=altair.Axis(labelLimit=10_000)
),
color=altair.Color(
"color:Q",
scale=altair.Scale(scheme="redblue", domain=[0, 1], reverse=True),
legend=None,
),
tooltip=[
altair.Tooltip("fullname:O", title="Test Name"),
altair.Tooltip("xlabel:O", title="Confidence threshold"),
altair.Tooltip("p:Q", format=".2p", title="p(B/A-1) exceeds threshold"),
],
)
.properties(title=title)
.configure(autosize="fit")
)
return chart, height
def details_report_fname(runtime: str, fullname: str) -> str:
fullname = fullname.replace("/", "-").replace(".py::", "-")
return f"details/{runtime}-{fullname}.html"
def make_timeseries(
df: pandas.DataFrame,
spec: ChartSpec,
title: str,
xdomain: tuple[float, float] | None,
) -> altair.Chart | None:
"""Make a single Altair timeseries chart for a given test"""
df = df.dropna(subset=[spec.field_name, "start"]).reset_index().copy()
if not len(df):
# Some tests do not have all measures, only runtime
return None
df["details_url"] = [
details_report_fname(runtime, fullname)
for runtime, fullname in zip(df.runtime, df.fullname)
]
kwargs = {}
# Reduce the size of the altair spec
df = df[
[
"id",
spec.field_name,
"start",
"details_url",
"name",
"name_short",
"call_outcome",
"coiled_runtime_version",
"dask_version",
"distributed_version",
"cluster_id",
]
]
if len(df.name.unique()) > 1:
kwargs["color"] = altair.Color("name_short:N")
if len(df.call_outcome.unique()) > 1:
kwargs["shape"] = altair.Shape(
"call_outcome:N",
scale=altair.Scale(domain=["passed", "failed"], range=["circle", "cross"]),
title="Outcome",
)
recent = df[df.start > df.start.max() - pandas.Timedelta(days=30)][spec.field_name]
y_max = max(recent.mean() + 3 * recent.std(), recent.max() * 1.05)
y_min = min(recent.mean() - 3 * recent.std(), recent.min() * 0.95)
y_domain = [y_min, y_max]
return (
altair.Chart(df, width=800, height=256)
.mark_line(point=altair.OverlayMarkDef(size=64))
.encode(
x=altair.X("start:T", scale=altair.Scale(domain=xdomain)),
y=altair.Y(
f"{spec.field_name}:Q",
title=f"{spec.field_desc} {spec.unit}",
scale=altair.Scale(domain=y_domain),
),
href=altair.Href("details_url:N"),
tooltip=[
altair.Tooltip("id:N", title="Test id"),
altair.Tooltip("name:N", title="Test Name"),
altair.Tooltip("start:T", title="Date"),
altair.Tooltip("call_outcome:N", title="Test Outcome"),
altair.Tooltip("coiled_runtime_version:N", title="Coiled Runtime"),
altair.Tooltip("dask_version:N", title="Dask"),
altair.Tooltip("distributed_version:N", title="Distributed"),
altair.Tooltip(
f"{spec.field_name}:Q", title=f"{spec.field_desc} {spec.unit}"
),
altair.Tooltip("cluster_id:Q", title="Cluster ID"),
],
**kwargs,
)
.properties(title=title)
.configure(autosize="fit")
.interactive(bind_y=False)
)
def make_test_report(
df: pandas.DataFrame,
kind: Literal["barchart" | "timeseries" | "A/B"],
title: str,
sourcename: str | None = None,
baseline: str | None = None,
xdomain: tuple[float, float] | None = None,
) -> panel.Tabs:
"""Make a tab panel for a single test"""
tabs = []
for spec in SPECS:
if kind == "timeseries":
assert not baseline
chart = make_timeseries(df, spec, title, xdomain=xdomain)
height = 384
elif kind == "barchart":
assert not baseline
chart, height = make_barchart(df, spec, title)
elif kind == "A/B":
assert baseline
chart, height = make_ab_confidence_map(df, spec, title, baseline=baseline)
else:
raise ValueError(kind) # pragma: nocover
if not chart:
continue
tabs.append((spec.field_desc, chart))
if sourcename in source:
code = panel.pane.Markdown(
f"```python\n{source[sourcename]}\n```",
width=800,
height=height,
styles={"overflow": "auto"},
)
tabs.append(("Source", code))
elif sourcename is not None:
print("Source code not found for", sourcename)
return panel.Tabs(*tabs, margin=12, width=800)
def make_timeseries_html_report(
df: pandas.DataFrame,
output_dir: pathlib.Path,
runtime: str,
ndays: int,
) -> None:
"""Generate HTML report for one runtime (e.g. Python 3.9), showing evolution of
measures (wall clock, average memory, etc.) over historical CI runs.
Create one tab for each test category (e.g. benchmarks, runtime, stability),
one graph for each test,
and one graph tab for each measure (wall clock, average memory, etc.).
"""
out_fname = str(output_dir.joinpath(runtime + ".html"))
print(f"Generating {out_fname}")
categories = sorted(df[df.runtime == runtime].category.unique())
# Remove the test name from the paramterized string for the legends
df["name_short"] = df.name.str.extract(r"\w+\[(.+)\]")[0]
df["name_short"].fillna(df["name"])
max_timerange = df["start"].max()
min_timerange = df["start"].min()
xdomain = [
max(min_timerange, max_timerange - pandas.Timedelta(days=30)),
max_timerange,
]
tabs = []
for category in categories:
df_by_test = df[(df.runtime == runtime) & (df.category == category)].groupby(
"sourcename"
)
panes = [
make_test_report(
df_by_test.get_group(sourcename),
kind="timeseries",
title=sourcename,
sourcename=sourcename,
xdomain=xdomain,
)
for sourcename in df_by_test.groups
]
flex = panel.FlexBox(*panes, align_items="start", justify_content="start")
tabs.append((category.title(), flex))
doc = panel.Tabs(*tabs, margin=12)
doc.save(out_fname, title=runtime, resources=CDN)
def make_barchart_html_report(
df: pandas.DataFrame,
output_dir: pathlib.Path,
by_test: bool,
) -> None:
"""Generate HTML report containing bar charts showing statistical information
(mean, median, etc).
Create one tab for each test category (e.g. benchmarks, runtime, stability),
one graph for each runtime and one bar for each test
OR one graph for each test and one bar for each runtime,
and one graph tab for each measure (wall clock, average memory, etc.).
"""
out_fname = str(
output_dir.joinpath(
"barcharts_by_" + ("test" if by_test else "runtime") + ".html"
)
)
print(f"Generating {out_fname}")
categories = sorted(df.category.unique())
tabs = []
for category in categories:
if by_test:
df_by_test = df[df.category == category].groupby(["sourcename", "fullname"])
panes = [
make_test_report(
df_by_test.get_group((sourcename, fullname)),
kind="barchart",
title=fullname,
sourcename=sourcename,
)
for sourcename, fullname in df_by_test.groups
]
else:
df_by_runtime = df[df.category == category].groupby("runtime")
panes = [
make_test_report(
df_by_runtime.get_group(runtime),
kind="barchart",
title=runtime,
)
for runtime in sorted(df_by_runtime.groups, key=natural_sort_key)
]
flex = panel.FlexBox(*panes, align_items="start", justify_content="start")
tabs.append((category.title(), flex))
doc = panel.Tabs(*tabs, margin=12)
doc.save(
out_fname,
title="Bar charts by " + ("test" if by_test else "runtime"),
resources=CDN,
)
def make_ab_html_report(
df: pandas.DataFrame,
output_dir: pathlib.Path,
baseline: str,
) -> bool:
"""Generate HTML report containing heat maps for confidence intervals relative to
a baseline runtime, e.g. p(B/A-1) > 10%
Create one tab for each test category (e.g. benchmarks, runtime, stability), one
graph for each runtime, and one graph tab for each measure (wall clock, average
memory, etc.).
Returns
-------
True if the report was generated; False otherwise
"""
out_fname = str(output_dir.joinpath(f"AB_vs_{baseline}.html"))
print(f"Generating {out_fname}")
categories = sorted(df.category.unique())
tabs = []
for category in categories:
df_by_runtime = df[df.category == category].groupby("runtime")
if baseline not in df_by_runtime.groups:
# Typically a misspelling. However, this can legitimately happen in CI if
# all three jobs of the baseline runtime failed early.
print(
f"Baseline runtime {baseline!r} not found; valid choices are:",
", ".join(df["runtime"].unique()),
)
return False
panes = [
make_test_report(
pandas.concat(
[
df_by_runtime.get_group(runtime),
df_by_runtime.get_group(baseline),
],
axis=0,
),
kind="A/B",
title=runtime,
baseline=baseline,
)
for runtime in sorted(df_by_runtime.groups, key=natural_sort_key)
if runtime != baseline
]
flex = panel.FlexBox(*panes, align_items="start", justify_content="start")
tabs.append((category.title(), flex))
doc = panel.Tabs(*tabs, margin=12)
doc.save(
out_fname,
title="A/B confidence intervals vs. " + baseline,
resources=CDN,
)
return True
def make_details_html_report(
df: pandas.DataFrame,
output_dir: pathlib.Path,
runtime: str,
fullname: str,
) -> None:
"""Generate raw tabular info dump for all runs of a single test"""
df = df.reset_index()
# Delete redundant columns
for k in (
"name",
"originalname",
"path",
"coiled_runtime_version",
"coiled_software_name",
"python_version",
"category",
"sourcename",
"runtime",
"fullname",
"fullname_no_category",
):
del df[k]
header = list(df.columns) + ["grafana_url"]
txt = dedent(
f"""
<style>
table, th, td {{border: 1px solid black; border-collapse: collapse;}}
th {{position: sticky; top: 0; background-color: lightgrey;}}
</style>
### {runtime}
### {fullname}
| {' | '.join(header)} |
| {' | '.join("---" for _ in header)} |
"""
)
for id_, ds_row in df.iterrows():
row = ds_row.to_dict()
row["grafana_url"] = make_grafana_url(
cluster_name=row["cluster_name"], start=row["start"], end=row["end"]
)
for k, v in row.items():
if v is None or (isinstance(v, float) and math.isnan(v)):
txt += "| "
elif k == "duration" or k.endswith("_time"):
txt += f"| {v:.1f}s "
elif "_tick" in k:
txt += f"| {v:.0f}ms "
elif "_memory" in k:
txt += f"| {v:.1f}GiB "
elif "_cpu" in k:
txt += f"| {v:.0f}% "
elif isinstance(v, str) and "://" in v:
txt += f"| [🔗]({v}) "
else:
txt += f"| {v} "
txt += " |\n"
md = panel.pane.Markdown(txt, width=800)
out_fname = output_dir / details_report_fname(runtime, fullname)
print(f"Generating {out_fname}")
md.save(
str(out_fname),
title=f"{runtime} - {fullname}",
resources=CDN,
)
def make_grafana_url(cluster_name, start, end) -> str | None:
if cluster_name:
# Add some padding to compensate for clock differences between
# GitHub actions and Prometheus, as well for sample granularity
# (at the moment of writing, Prometheus data is sampled every 5s)
ts_padding = pandas.Timedelta("10s")
start_ts = int((start - ts_padding).timestamp() * 1000)
end_ts = int((end + ts_padding).timestamp() * 1000)
# We switched to new datasource and new (now public) Grafana instance,
# so use different URL depending on when this test ran
if start_ts < 1679590932198:
return (
"https://grafana.dev-sandbox.coiledhq.com/d/eU1bT-nVz/cluster-metrics-prometheus"
f"?var-datasource={quote(OLD_PROMETHEUS_DATASOURCE)}"
f"&from={start_ts}&to={end_ts}&var-cluster={cluster_name}"
)
else:
return (
"https://benchmarks-grafana.oss.coiledhq.com/d/GvbFsqKVk/coiled-cluster-metrics-basic"
"?var-datasource=Benchmarks&var-account=dask-benchmarks&"
f"var-cluster={cluster_name}&from={start_ts}&to={end_ts}"
)
else:
return None
def make_index_html_report(
output_dir: pathlib.Path, runtimes: list[str], baselines: list[str]
) -> None:
"""Generate index.html"""
txt = """# Coiled Runtime Benchmarks\n"""
txt += "### Historical timeseries\n"
for runtime in runtimes:
txt += f"- [{runtime}](./{runtime}.html)\n"
txt += "\n\n### Statistical analysis\n"
txt += "- [Bar charts, by test](./barcharts_by_test.html)\n"
txt += "- [Bar charts, by runtime](./barcharts_by_runtime.html)\n"
for baseline in baselines:
txt += f"- [A/B confidence intervals vs. {baseline}](./AB_vs_{baseline}.html)\n"
md = panel.pane.Markdown(txt, width=800, renderer="markdown")
out_fname = str(output_dir / "index.html")
print(f"Generating {out_fname}")
md.save(
out_fname,
title="Coiled Runtime Benchmarks",
resources=CDN,
)
def natural_sort_key_pd(s: pandas.Series) -> pandas.Series:
return pandas.Series([natural_sort_key(v) for v in s], index=s.index)
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser(
description="Generate a static HTML report comparing metrics from the runs"
)
parser.add_argument(
"--db-file",
"-d",
help="Path to SQLite database file containing the metrics",
)
parser.add_argument(
"--ndays",
default=30,
help="The number of days to show by default when plotting timeseries charts.",
)
parser.add_argument(
"--output-dir",
"-o",
help="Output directory",
default="build/html",
)
parser.add_argument(
"--baseline",
"-b",
nargs="+",
default=[],
help="Baseline runtime(s) for A/B comparison",
)
parser.add_argument(
"--pickle",
action="store_true",
help="Dump raw dataframe to pickle file",
)
return parser.parse_args()
def main() -> None:
args = parse_args()
output_dir = pathlib.Path(args.output_dir)
(output_dir / "details").mkdir(parents=True, exist_ok=True)
load_test_source()
# Load SQLite database into a pandas DataFrame
engine = sqlalchemy.create_engine(f"sqlite:///{args.db_file}")
df = pandas.read_sql(
"select * from test_run where platform = 'linux' "
"and call_outcome in ('passed', 'failed')"
"and start >= datetime('now', '-30 day')",
engine,
)
df = df.assign(
start=pandas.to_datetime(df.start),
end=pandas.to_datetime(df.end),
runtime=numpy.where(
# A/B tests (.github/workflows/ab_tests.yaml)
df.coiled_runtime_version.str[:3] == "AB_",
df.coiled_runtime_version.str[3:],
# PRs and overnight tests (.github/workflows/tests.yaml)
df.python_version.apply(lambda v: "Python " + ".".join(v.split(".")[:2])),
),
category=df.path.str.split("/", n=1).str[0],
sourcename=df.path.str.cat(df.originalname, "::"),
fullname=df.path.str.cat(df.name, "::"),
fullname_no_category=df.path.str.partition("/")[2].str.cat(df.name, "::"),
)
for spec in SPECS:
df[spec.field_name] /= spec.scale
df = df.set_index("id")
if args.pickle:
out_fname = str(output_dir.joinpath("records.pickle"))
print(f"Generating {out_fname}")
df.to_pickle(out_fname)
# Generate HTML pages
runtimes = sorted(df.runtime.unique(), key=natural_sort_key)
for runtime in runtimes:
make_timeseries_html_report(df, output_dir, runtime, args.ndays)
for (runtime, fullname), df2 in df.groupby(["runtime", "fullname"]):
make_details_html_report(df2, output_dir, runtime, fullname)
# Do not use data that is more than a week old in statistical analysis.
# Also exclude failed tests.
df_recent = df[
(df["end"] > df["end"].max() - pandas.Timedelta("7d"))
& (df["call_outcome"] == "passed")
]
if args.pickle:
out_fname = str(output_dir.joinpath("records_recent.pickle"))
print(f"Generating {out_fname}")
df_recent.to_pickle(out_fname)
make_barchart_html_report(df_recent, output_dir, by_test=True)
make_barchart_html_report(df_recent, output_dir, by_test=False)
baselines = []
if "all" in args.baseline:
baselines_input = list(df_recent["runtime"].unique())
else:
baselines_input = args.baseline
for baseline in baselines_input:
has_baseline = make_ab_html_report(df_recent, output_dir, baseline)
if has_baseline:
baselines.append(baseline)
make_index_html_report(output_dir, runtimes, baselines)
if __name__ == "__main__":
main()