-
Notifications
You must be signed in to change notification settings - Fork 6
Home
Using Function getAnnoations(sentence) returns a dictionary of annotations.
>>>annotator.getAnnotations("There are people dying make this world a better place for you and for me.")
{'dep_parse': '', 'chunk': [('There', 'S-NP'), ('are', 'S-VP'), ('people', 'S-NP'), ('dying', 'B-VP'), ('make', 'E-VP'), ('this', 'B-NP'), ('world', 'E-NP'), ('a', 'B-NP'), ('better', 'I-NP'), ('place', 'E-NP'), ('for', 'S-PP'), ('you', 'S-NP'), ('and', 'O'), ('for', 'S-PP'), ('me.', 'S-NP')], 'pos': [('There', 'EX'), ('are', 'VBP'), ('people', 'NNS'), ('dying', 'VBG'), ('make', 'VB'), ('this', 'DT'), ('world', 'NN'), ('a', 'DT'), ('better', 'JJR'), ('place', 'NN'), ('for', 'IN'), ('you', 'PRP'), ('and', 'CC'), ('for', 'IN'), ('me.', '.')], 'srl': [{'A1': 'people', 'V': 'dying'}, {'A1': 'people this world', 'A2': 'a better place for you and for me.', 'V': 'make'}], 'syntax_tree': '(S1(S(NP(EX There))(VP(VBP are)(NP(NP(NNS people))(SBAR(S(VBG dying)(VP(VB make)(S(NP(DT this)(NN world))(NP(DT a)(JJR better)(NN place)))(PP(PP(IN for)(NP(PRP you)))(CC and)(PP(IN for)(NP(. me.)))))))))))', 'verbs': ['dying', 'make'], 'words': ['There', 'are', 'people', 'dying', 'make', 'this', 'world', 'a', 'better', 'place', 'for', 'you', 'and', 'for', 'me.'], 'ner': [('There', 'O'), ('are', 'O'), ('people', 'O'), ('dying', 'O'), ('make', 'O'), ('this', 'O'), ('world', 'O'), ('a', 'O'), ('better', 'O'), ('place', 'O'), ('for', 'O'), ('you', 'O'), ('and', 'O'), ('for', 'O'), ('me.', 'O')]}
Using Function getAnnoations(sentence,dep_parse=True) returns a dictionary of annotations with dependency parse, by default it is switched off.
>>>annotator.getAnnotations("There are people dying make this world a better place for you and for me.",dep_parse=True)
{'dep_parse': 'expl(are-2, There-1)\nroot(ROOT-0, are-2)\nnsubj(are-2, people-3)\ndep(make-5, dying-4)\nrcmod(people-3, make-5)\ndet(world-7, this-6)\nnsubj(place-10, world-7)\ndet(place-10, a-8)\namod(place-10, better-9)\nxcomp(make-5, place-10)\nprep_for(make-5, you-12)\nconj_and(you-12, me.-15)', 'chunk': [('There', 'S-NP'), ('are', 'S-VP'), ('people', 'S-NP'), ('dying', 'B-VP'), ('make', 'E-VP'), ('this', 'B-NP'), ('world', 'E-NP'), ('a', 'B-NP'), ('better', 'I-NP'), ('place', 'E-NP'), ('for', 'S-PP'), ('you', 'S-NP'), ('and', 'O'), ('for', 'S-PP'), ('me.', 'S-NP')], 'pos': [('There', 'EX'), ('are', 'VBP'), ('people', 'NNS'), ('dying', 'VBG'), ('make', 'VB'), ('this', 'DT'), ('world', 'NN'), ('a', 'DT'), ('better', 'JJR'), ('place', 'NN'), ('for', 'IN'), ('you', 'PRP'), ('and', 'CC'), ('for', 'IN'), ('me.', '.')], 'srl': [{'A1': 'people', 'V': 'dying'}, {'A1': 'people this world', 'A2': 'a better place for you and for me.', 'V': 'make'}], 'syntax_tree': '(S1(S(NP(EX There))(VP(VBP are)(NP(NP(NNS people))(SBAR(S(VBG dying)(VP(VB make)(S(NP(DT this)(NN world))(NP(DT a)(JJR better)(NN place)))(PP(PP(IN for)(NP(PRP you)))(CC and)(PP(IN for)(NP(. me.)))))))))))', 'verbs': ['dying', 'make'], 'words': ['There', 'are', 'people', 'dying', 'make', 'this', 'world', 'a', 'better', 'place', 'for', 'you', 'and', 'for', 'me.'], 'ner': [('There', 'O'), ('are', 'O'), ('people', 'O'), ('dying', 'O'), ('make', 'O'), ('this', 'O'), ('world', 'O'), ('a', 'O'), ('better', 'O'), ('place', 'O'), ('for', 'O'), ('you', 'O'), ('and', 'O'), ('for', 'O'), ('me.', 'O')]}
You can access individual componets as:
>>>annotator.getAnnotations("Biplab is a good boy.")['pos']
[('Biplab', 'NNP'), ('is', 'VBZ'), ('a', 'DT'), ('good', 'JJ'), ('boy', 'NN'), ('.', '.')]
>>>annotator.getAnnotations("Biplab is a good boy.")['ner']
[('Biplab', 'S-PER'), ('is', 'O'), ('a', 'O'), ('good', 'O'), ('boy', 'O'), ('.', 'O')]
>>>annotator.getAnnotations("Biplab is a good boy.")['chunk']
[('Biplab', 'S-NP'), ('is', 'S-VP'), ('a', 'B-NP'), ('good', 'I-NP'), ('boy', 'E-NP'), ('.', 'O')]
To list the verbs for which semantic roles are found.
>>>annotator.getAnnotations("He created the robot and broke it after making it.")['verbs']
['created', 'broke', 'making']
'srl' Returns a list of dictionaries, identifyinging sematic roles for various verbs in sentence.
>>>annotator.getAnnotations("He created the robot and broke it after making it.")['srl']
[{'A1': 'the robot', 'A0': 'He', 'V': 'created'}, {'A1': 'it', 'A0': 'He', 'AM-TMP': 'after making it.', 'V': 'broke'}, {'A1': 'it.', 'A0': 'He', 'V': 'making'}]
'syntax_tree' Returns syntax tree in penn Tree Bank Format.
>>>annotator.getAnnotations("He created the robot and broke it after making it.")['syntax_tree']
'(S1(S(NP(PRP He))(VP(VP(VBD created)(NP(DT the)(NN robot)))(CC and)(VP(VBD broke)(NP(PRP it))(PP(IN after)(S(VP(VBG making)(NP(PRP it.)))))))))'
'dep_parse' Returns dependency Relations as a string. Each relation is in new line. You may require some post processing on this.
Notes: dep_parse may not work properly if stanford dependency parser is not present in practnlptools folder. To change in the output format from edit
lexparser.sh
(self testing only) if you know what you are doing
To know about outputformat
see the Stanford Parser FAQ link and manuall link.
>>> annotator.getAnnotations("He created the robot and broke it after making it.",dep_parse=True)['dep_parse']
nsubj(created-2, He-1)
root(ROOT-0, created-2)
det(robot-4, the-3)
dobj(created-2, robot-4)
conj_and(created-2, broke-6)
dobj(broke-6, it-7)
prepc_after(broke-6, making-9)
dobj(making-9, it.-10)
If there are many sentences to annotate, Use batch Mode, annotator.getBatchAnnotations(sentences,dep_parse=True/False). Returns a list of annotation dictionaries.
>>>annotator.getBatchAnnotations(["He created the robot and broke it after making it.","Biplab is a good boy."],dep_parse=True)
[{'dep_parse': 'nsubj(created-2, He-1)\nroot(ROOT-0, created-2)\ndet(robot-4, the-3)\ndobj(created-2, robot-4)\nconj_and(created-2, broke-6)\ndobj(broke-6, it-7)\nprepc_after(broke-6, making-9)\ndobj(making-9, it.-10)', 'chunk': [('He', 'S-NP'), ('created', 'S-VP'), ('the', 'B-NP'), ('robot', 'E-NP'), ('and', 'O'), ('broke', 'S-VP'), ('it', 'S-NP'), ('after', 'S-PP'), ('making', 'S-VP'), ('it.', 'S-NP')], 'pos': [('He', 'PRP'), ('created', 'VBD'), ('the', 'DT'), ('robot', 'NN'), ('and', 'CC'), ('broke', 'VBD'), ('it', 'PRP'), ('after', 'IN'), ('making', 'VBG'), ('it.', 'PRP')], 'srl': [{'A1': 'the robot', 'A0': 'He', 'V': 'created'}, {'A1': 'it', 'A0': 'He', 'AM-TMP': 'after making it.', 'V': 'broke'}, {'A1': 'it.', 'A0': 'He', 'V': 'making'}], 'syntax_tree': '(S1(S(NP(PRP He))(VP(VP(VBD created)(NP(DT the)(NN robot)))(CC and)(VP(VBD broke)(NP(PRP it))(PP(IN after)(S(VP(VBG making)(NP(PRP it.)))))))))', 'verbs': ['created', 'broke', 'making'], 'words': ['He', 'created', 'the', 'robot', 'and', 'broke', 'it', 'after', 'making', 'it.'], 'ner': [('He', 'O'), ('created', 'O'), ('the', 'O'), ('robot', 'O'), ('and', 'O'), ('broke', 'O'), ('it', 'O'), ('after', 'O'), ('making', 'O'), ('it.', 'O')]}, {'dep_parse': 'nsubj(boy-5, Biplab-1)\ncop(boy-5, is-2)\ndet(boy-5, a-3)\namod(boy-5, good-4)\nroot(ROOT-0, boy-5)', 'chunk': [('Biplab', 'S-NP'), ('is', 'S-VP'), ('a', 'B-NP'), ('good', 'I-NP'), ('boy', 'E-NP'), ('.', 'O')], 'pos': [('Biplab', 'NNP'), ('is', 'VBZ'), ('a', 'DT'), ('good', 'JJ'), ('boy', 'NN'), ('.', '.')], 'srl': [], 'syntax_tree': '(S1(S(NP(NNP Biplab))(VP(VBZ is)(NP(DT a)(JJ good)(NN boy)))(. .)))', 'verbs': [], 'words': ['Biplab', 'is', 'a', 'good', 'boy', '.'], 'ner': [('Biplab', 'S-PER'), ('is', 'O'), ('a', 'O'), ('good', 'O'), ('boy', 'O'), ('.', 'O')]}]
Note: For illustration purposes we have used:
>>>annotator.getAnnotations("He created the robot and broke it after making it.",dep_parse=True)['dep_parse']
Better method is:
>>>annotation=annotator.getAnnotations("He created the robot and broke it after making it.",dep_parse=True)
>>>ner=annotation['ner']
>>>srl=annotation['srl']
>>>from pntl.utils import skipgrams
>>>sent = "He created the robot and broke it after making it."
>>>#return generators
>>>list(skipgrams(sent.split(), n=3, k=2))
[('He', 'created', 'the'), ('He', 'created', 'robot'), ('He', 'created', 'and'), ('He', 'the', 'robot'), ('He', 'the', 'and'), ('He', 'robot', 'and'), ('created', 'the', 'robot'), ('created', 'the', 'and'), ('created', 'the', 'broke'), ('created', 'robot', 'and'), ('created', 'robot', 'broke'), ('created', 'and', 'broke'), ('the', 'robot', 'and'), ('the', 'robot', 'broke'), ('the', 'robot', 'it'), ('the', 'and', 'broke'), ('the', 'and', 'it'), ('the', 'broke', 'it'), ('robot', 'and', 'broke'), ('robot', 'and', 'it'), ('robot', 'and', 'after'), ('robot', 'broke', 'it'), ('robot', 'broke', 'after'), ('robot', 'it', 'after'), ('and', 'broke', 'it'), ('and', 'broke', 'after'), ('and', 'broke', 'making'), ('and', 'it', 'after'), ('and', 'it', 'making'), ('and', 'after', 'making'), ('broke', 'it', 'after'), ('broke', 'it', 'making'), ('broke', 'it', 'it.'), ('broke', 'after', 'making'), ('broke', 'after', 'it.'), ('broke', 'making', 'it.'), ('it', 'after', 'making'), ('it', 'after', 'it.'), ('it', 'making', 'it.'), ('after', 'making', 'it.')]
n = is the value for n-grams
k = skip value
skipgrams()
returns the output in genetator form for better memory management.