-
Notifications
You must be signed in to change notification settings - Fork 0
/
fine-tuning.py
279 lines (234 loc) · 10.1 KB
/
fine-tuning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
# ************************************************************
# Author : Bumsoo Kim, 2017
# Github : https://github.com/meliketoy/fine-tuning.pytorch
#
# Korea University, Data-Mining Lab
# Deep Convolutional Network Fine tuning Implementation
#
# Description : main.py
# The main code for training classification networks.
# ***********************************************************
from __future__ import print_function, division
import torch
import torch.nn as nn
import torch.optim as optim
import torch.backends.cudnn as cudnn
import numpy as np
import config as cf
import torchvision
import time
import copy
import os
import sys
import argparse
from torchvision import datasets, models, transforms
from networks import *
from torch.autograd import Variable
parser = argparse.ArgumentParser(description='PyTorch Digital Mammography Training')
parser.add_argument('--lr', default=1e-3, type=float, help='learning rate')
parser.add_argument('--net_type', default='resnet', type=str, help='model')
parser.add_argument('--depth', default=50, type=int, help='depth of model')
parser.add_argument('--weight_decay', default=5e-4, type=float, help='weight decay')
parser.add_argument('--finetune', '-f', action='store_true', help='Fine tune pretrained model')
parser.add_argument('--addlayer','-a',action='store_true', help='Add additional layer in fine-tuning')
parser.add_argument('--resetClassifier', '-r', action='store_true', help='Reset classifier')
parser.add_argument('--testOnly', '-t', action='store_true', help='Test mode with the saved model')
args = parser.parse_args()
# Phase 1 : Data Upload
print('\n[Phase 1] : Data Preperation')
data_transforms = {
'train': transforms.Compose([
transforms.RandomSizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(cf.mean, cf.std)
]),
'val': transforms.Compose([
transforms.Scale(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(cf.mean, cf.std)
]),
}
data_dir = cf.aug_base
dataset_dir = cf.data_base.split("/")[-1] + os.sep
print("| Preparing model trained on %s dataset..." %(cf.data_base.split("/")[-1]))
dsets = {
x : datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x])
for x in ['train', 'val']
}
dset_loaders = {
x : torch.utils.data.DataLoader(dsets[x], batch_size = cf.batch_size, shuffle=(x=='train'), num_workers=4)
for x in ['train', 'val']
}
dset_sizes = {x: len(dsets[x]) for x in ['train', 'val']}
dset_classes = dsets['train'].classes
use_gpu = torch.cuda.is_available()
# Phase 2 : Model setup
print('\n[Phase 2] : Model setup')
def getNetwork(args):
if (args.net_type == 'alexnet'):
net = models.alexnet(pretrained=args.finetune)
file_name = 'alexnet'
elif (args.net_type == 'vggnet'):
if(args.depth == 11):
net = models.vgg11(pretrained=args.finetune)
elif(args.depth == 13):
net = models.vgg13(pretrained=args.finetune)
elif(args.depth == 16):
net = models.vgg16(pretrained=args.finetune)
elif(args.depth == 19):
net = models.vgg19(pretrained=args.finetune)
else:
print('Error : VGGnet should have depth of either [11, 13, 16, 19]')
sys.exit(1)
file_name = 'vgg-%s' %(args.depth)
elif (args.net_type == 'resnet'):
net = resnet(args.finetune, args.depth)
file_name = 'resnet-%s' %(args.depth)
else:
print('Error : Network should be either [alexnet / vggnet / resnet]')
sys.exit(1)
return net, file_name
def softmax(x):
return np.exp(x) / np.sum(np.exp(x), axis=0)
# Test only option
if (args.testOnly):
print("| Loading checkpoint model for test phase...")
assert os.path.isdir('checkpoint'), 'Error: No checkpoint directory found!'
_, file_name = getNetwork(args)
checkpoint = torch.load('./checkpoint/'+dataset_dir+'/'+file_name+'.t7')
model = checkpoint['model']
if use_gpu:
model.cuda()
# model = torch.nn.DataParallel(model, device_ids=range(torch.cuda.device_count()))
# cudnn.benchmark = True
model.eval()
test_loss = 0
correct = 0
total = 0
testsets = datasets.ImageFolder(cf.test_dir, data_transforms['val'])
testloader = torch.utils.data.DataLoader(
testsets,
batch_size = 1,
shuffle = False,
num_workers=1
)
print("\n[Phase 3 : Inference on %s]" %cf.test_dir)
for batch_idx, (inputs, targets) in enumerate(testloader):#dset_loaders['val']):
if use_gpu:
inputs, targets = inputs.cuda(), targets.cuda()
inputs, targets = Variable(inputs, volatile=True), Variable(targets)
outputs = model(inputs)
# print(outputs.data.cpu().numpy()[0])
softmax_res = softmax(outputs.data.cpu().numpy()[0])
_, predicted = torch.max(outputs.data, 1)
total += targets.size(0)
correct += predicted.eq(targets.data).cpu().sum()
acc = 100.*correct/total
print("| Test Result\tAcc@1 %.2f%%" %(acc))
sys.exit(0)
# Training model
def train_model(model, criterion, optimizer, lr_scheduler, num_epochs=cf.num_epochs):
global dataset_dir
since = time.time()
best_model, best_acc = model, 0.0
print('\n[Phase 3] : Training Model')
print('| Training Epochs = %d' %num_epochs)
print('| Initial Learning Rate = %f' %args.lr)
print('| Optimizer = SGD')
for epoch in range(num_epochs):
for phase in ['train', 'val']:
if phase == 'train':
optimizer, lr = lr_scheduler(optimizer, epoch)
print('\n=> Training Epoch #%d, LR=%f' %(epoch+1, lr))
model.train(True)
else:
model.train(False)
model.eval()
running_loss, running_corrects, tot = 0.0, 0, 0
for batch_idx, (inputs, labels) in enumerate(dset_loaders[phase]):
if use_gpu:
inputs, labels = Variable(inputs.cuda()), Variable(labels.cuda())
else:
inputs, labels = Variable(inputs), Variable(labels)
optimizer.zero_grad()
# Forward Propagation
outputs = model(inputs)
_, preds = torch.max(outputs.data, 1)
loss = criterion(outputs, labels)
# Backward Propagation
if phase == 'train':
loss.backward()
optimizer.step()
# Statistics
running_loss += loss.data[0]
running_corrects += preds.eq(labels.data).cpu().sum()
tot += labels.size(0)
if (phase == 'train'):
sys.stdout.write('\r')
sys.stdout.write('| Epoch [%2d/%2d] Iter [%3d/%3d]\t\tLoss %.4f\tAcc %.2f%%'
%(epoch+1, num_epochs, batch_idx+1,
(len(dsets[phase])//cf.batch_size)+1, loss.data[0], 100.*running_corrects/tot))
sys.stdout.flush()
sys.stdout.write('\r')
epoch_loss = running_loss / dset_sizes[phase]
epoch_acc = running_corrects / dset_sizes[phase]
if (phase == 'val'):
print('\n| Validation Epoch #%d\t\t\tLoss %.4f\tAcc %.2f%%'
%(epoch+1, loss.data[0], 100.*epoch_acc))
if epoch_acc > best_acc:
print('| Saving Best model...\t\t\tTop1 %.2f%%' %(100.*epoch_acc))
best_acc = epoch_acc
best_model = copy.deepcopy(model)
state = {
'model': best_model,
'acc': epoch_acc,
'epoch':epoch,
}
if not os.path.isdir('checkpoint'):
os.mkdir('checkpoint')
save_point = './checkpoint/'+dataset_dir
if not os.path.isdir(save_point):
os.mkdir(save_point)
torch.save(state, save_point+file_name+'.t7')
time_elapsed = time.time() - since
print('\nTraining completed in\t{:.0f} min {:.0f} sec'. format(time_elapsed // 60, time_elapsed % 60))
print('Best validation Acc\t{:.2f}%'.format(best_acc*100))
return best_model
def exp_lr_scheduler(optimizer, epoch, init_lr=args.lr, weight_decay=args.weight_decay, lr_decay_epoch=10):
lr = init_lr * (0.5**(epoch // lr_decay_epoch))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
param_group['weight_decay'] = weight_decay
return optimizer, lr
model_ft, file_name = getNetwork(args)
if(args.resetClassifier):
print('| Reset final classifier...')
if(args.addlayer):
print('| Add features of size %d' %cf.feature_size)
num_ftrs = model_ft.fc.in_features
feature_model = list(model_ft.fc.children())
feature_model.append(nn.Linear(num_ftrs, cf.feature_size))
feature_model.append(nn.BatchNorm1d(cf.feature_size))
feature_model.append(nn.ReLU(inplace=True))
feature_model.append(nn.Linear(cf.feature_size, len(dset_classes)))
model_ft.fc = nn.Sequential(*feature_model)
else:
if(args.net_type == 'alexnet' or args.net_type == 'vggnet'):
num_ftrs = model_ft.classifier[6].in_features
feature_model = list(model_ft.classifier.children())
feature_model.pop()
feature_model.append(nn.Linear(num_ftrs, len(dset_classes)))
model_ft.classifier = nn.Sequential(*feature_model)
elif(args.net_type == 'resnet'):
num_ftrs = model_ft.fc.in_features
model_ft.fc = nn.Linear(num_ftrs, len(dset_classes))
if use_gpu:
model_ft = model_ft.cuda()
model_ft = torch.nn.DataParallel(model_ft, device_ids=range(torch.cuda.device_count()))
cudnn.benchmark = True
if __name__ == "__main__":
criterion = nn.CrossEntropyLoss()
optimizer_ft = optim.SGD(model_ft.parameters(), lr=args.lr, momentum=0.9, weight_decay=args.weight_decay)
model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler, num_epochs=cf.num_epochs)