-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsys_f.v
282 lines (242 loc) · 8.7 KB
/
sys_f.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
(** FORMALIZATION OF SYSTEM F USING LOCALLY NAMELESS APPROACH **)
Import Coq.Init.Nat.
Require Import List.
Require Import Lia.
Import ListNotations.
Require Import Coq.NArith.BinNat.
Require Import Coq.Init.Datatypes.
(* Define the basic unit of a variable *)
Definition atom_tm := nat.
Definition atom_ty := nat.
Axiom infinite_atoms_ty : exists L, forall x : atom_ty, In x L.
Axiom choose_fresh_ty : forall L : list atom_ty, exists x, ~ In x L.
Axiom infinite_atoms_tm : exists L, forall x : atom_tm, In x L.
Axiom choose_fresh_tm : forall L : list atom_tm, exists x, ~ In x L.
(* Define the types in the system *)
Inductive ty : Type :=
| ty_bvar : nat -> ty (* bound type variable, using de Bruijn index *)
| ty_fvar : atom_ty -> ty (* free type variable, using atoms *)
| ty_arrow : ty -> ty -> ty (* function type *)
| ty_forall : ty -> ty -> ty. (* universal type *)
(* Define the terms in the system *)
Inductive tm : Type :=
| tm_bvar : nat -> tm (* bound term variable, using de Bruijn index *)
| tm_fvar : atom_tm -> tm (* free term variable, using atoms *)
| tm_abs : ty -> tm -> tm (* lambda abstraction with type annotation *)
| tm_app : tm -> tm -> tm (* application *)
| tm_ttabs : ty -> tm -> tm (* type abstraction *)
| tm_ttapp : tm -> ty -> tm. (* type application *)
(* Contexts *)
(* Type context associates free term variables (atoms) with their types *)
Definition type_context := list (atom_tm * ty).
(* Kind context simply lists the free type variables *)
Definition kind_context := list atom_ty.
(** Implement 'term' check - there are no free de bruijn indices
whether at the term level or the type level*)
Inductive type_ty : nat -> ty -> Prop :=
| type_bvar : forall k n,
n < k -> type_ty k (ty_bvar n)
| type_fvar : forall k X,
type_ty k (ty_fvar X)
| type_arrow : forall k T1 T2,
type_ty k T1 ->
type_ty k T2 ->
type_ty k (ty_arrow T1 T2)
| type_forall : forall k T1 T2,
type_ty (S k) T2 ->
type_ty k (ty_forall T1 T2).
Definition closed_ty (T: ty) := type_ty 0 T.
Inductive term_tm : nat -> tm -> Prop :=
| term_bvar : forall k n,
n < k ->
term_tm k (tm_bvar n)
| term_fvar : forall k x,
term_tm k (tm_fvar x)
| term_abs : forall k T t,
type_ty k T ->
term_tm (S k) t ->
term_tm k (tm_abs T t)
| term_app : forall k t1 t2,
term_tm k t1 ->
term_tm k t2 ->
term_tm k (tm_app t1 t2)
| term_ttabs : forall k T t,
type_ty k T ->
term_tm (S k) t ->
term_tm k (tm_ttabs T t)
| term_ttapp : forall k t T,
term_tm k t ->
type_ty k T ->
term_tm k (tm_ttapp t T).
Definition closed_tm (t: tm) := term_tm 0 t.
(* Open a type with a type *)
(* Opening T with X *)
Fixpoint open_ty_helper (T : ty) (X : ty) (N : nat) : ty :=
match T with
| ty_bvar M => if N =? M then X else T
| ty_fvar Y => T
| ty_arrow T1 T2 => ty_arrow (open_ty_helper T1 X N) (open_ty_helper T2 X N)
| ty_forall T1 T2 => ty_forall (open_ty_helper T1 X N) (open_ty_helper T2 X (S N))
end.
Definition open_ty_ty T X := open_ty_helper T (ty_fvar X) 0.
(* Open term with term *)
Fixpoint open_tm_tm_h (t : tm) (s : tm) (n : nat) : tm :=
match t with
| tm_bvar m => if n =? m then s else t
| tm_fvar x => t
| tm_abs T t' => tm_abs T (open_tm_tm_h t' s (S n))
| tm_app t1 t2 => tm_app (open_tm_tm_h t1 s n) (open_tm_tm_h t2 s n)
| tm_ttabs T t' => tm_ttabs T (open_tm_tm_h t' s n)
| tm_ttapp t' T => tm_ttapp (open_tm_tm_h t' s n) T
end.
Definition open_tm_tm t s := open_tm_tm_h t (tm_fvar s) 0.
(* Open term with type *)
Fixpoint open_tm_ty_h (t : tm) (X : ty) (n : nat) : tm :=
match t with
| tm_bvar m => t
| tm_fvar x => tm_fvar x
| tm_abs T t' => tm_abs (open_ty_helper T X n) (open_tm_ty_h t' X (S n))
| tm_app t1 t2 => tm_app (open_tm_ty_h t1 X n) (open_tm_ty_h t2 X n)
| tm_ttabs T t' => tm_ttabs (open_ty_helper T X n) (open_tm_ty_h t' X (S n))
| tm_ttapp t' T => tm_ttapp (open_tm_ty_h t' X n) (open_ty_helper T X n)
end.
Definition open_tm_ty t X := open_tm_ty_h t (ty_fvar X) 0.
(* Typing rules define when a term has a certain type *)
Inductive has_type : type_context -> kind_context -> tm -> ty -> Prop :=
| T_Var : forall Gamma Delta x T,
List.In (x, T) Gamma ->
has_type Gamma Delta (tm_fvar x) T
| T_Abs : forall Gamma Delta T1 t2 T2 L,
closed_ty T1 ->
(forall x, ~ (List.In x L) ->
has_type ((x, T1) :: Gamma) Delta (open_tm_tm t2 x) T2) ->
has_type Gamma Delta (tm_abs T1 t2) (ty_arrow T1 T2)
| T_App : forall Gamma Delta t1 t2 T1 T2,
has_type Gamma Delta t1 (ty_arrow T1 T2) ->
has_type Gamma Delta t2 T1 ->
has_type Gamma Delta (tm_app t1 t2) T2
| T_TAbs : forall Gamma Delta t V T L,
(forall X, ~ (List.In X L) ->
has_type Gamma (X :: Delta) (open_tm_ty t X) (open_ty_ty T X)) ->
has_type Gamma Delta (tm_ttabs V t) (ty_forall V T)
| T_TApp : forall Gamma Delta t T1 T2,
has_type Gamma Delta t (ty_forall T1 T2) ->
closed_ty T2 ->
has_type Gamma Delta (tm_ttapp t T1) (open_ty_helper T2 T1 0).
(** Values *)
Inductive value : tm -> Prop :=
| value_abs : forall X t, closed_tm (tm_abs X t) ->
value (tm_abs X t)
| value_tabs : forall X t, closed_tm (tm_ttabs X t) ->
value (tm_ttabs X t).
(** Small step reduction rules *)
Inductive step : tm -> tm -> Prop :=
(* Context rules for term application *)
| ST_App1 : forall t1 t1' t2,
closed_tm t2 ->
step t1 t1' ->
step (tm_app t1 t2) (tm_app t1' t2)
| ST_App2 : forall v1 t2 t2',
value v1 ->
step t2 t2' ->
step (tm_app v1 t2) (tm_app v1 t2')
(* Context rules for type application *)
| ST_TApp : forall t1 t1' T,
closed_ty T ->
step t1 t1' ->
step (tm_ttapp t1 T) (tm_ttapp t1' T)
(* Term Beta-reduction *)
| ST_Abs : forall T t1 v2,
closed_tm (tm_abs T t1) ->
value v2 ->
step (tm_app (tm_abs T t1) v2) (open_tm_tm_h t1 v2 0)
(* Type beta-reduction *)
| ST_TAbs : forall T1 t T2,
closed_tm (tm_ttabs T1 t) ->
closed_ty T2 ->
step (tm_ttapp (tm_ttabs T1 t) T2) (open_tm_ty_h t T2 0).
(** Our goal is to prove preservation and progress *)
Definition preservation := forall G D e e' T,
has_type G D e T ->
step e e' ->
has_type G D e' T.
Definition progress := forall e T,
has_type [] [] e T ->
value e
\/ exists e', step e e'.
(** Lemmas *)
(** Canonical Forms *)
Lemma canonical_form_abs : forall t T1 T2,
value t -> has_type [] [] t (ty_arrow T1 T2) ->
exists V, exists t1, t = tm_abs V t1.
Proof.
intros t T1 T2 Val HT.
induction HT; intros; inversion Val; subst; try contradiction.
- exists T0. exists t2. reflexivity.
- destruct (choose_fresh_ty L) as [X notInL].
specialize (H X notInL). specialize (H0 X notInL).
destruct Val.
Admitted.
Lemma canonical_form_tabs : forall t T1 T2,
value t -> has_type [] [] t (ty_forall T1 T2) ->
exists V, exists t1, t = tm_ttabs V t1.
Proof.
Admitted.
(* Substitution Lemma *)
Lemma nat_eqb_eq : forall n m : nat,
n =? m = true <-> n = m.
Proof.
induction n; destruct m; split; intros; try reflexivity; try discriminate.
- simpl in H. apply IHn in H. rewrite H. reflexivity.
- inversion H. simpl. destruct IHn with m; subst. apply H2. reflexivity.
Qed.
Lemma nat_eqb_neq : forall n m : nat,
n =? m = false <-> n <> m.
Proof.
induction n; destruct m; split; intros; try reflexivity; try discriminate.
- destruct H. reflexivity.
- apply IHn in H. congruence.
- simpl. rewrite IHn. congruence.
Qed.
Lemma in_cons_neq_tail : forall (A B : Type) (a x : A) (U T : B) (l : list (A * B)),
In (a, U) ((x, T) :: l) -> a <> x -> In (a, U) l.
Proof.
intros A B a x U T l H Hneq.
destruct H as [H_head | H_tail].
- inversion H_head; subst.
contradiction Hneq; reflexivity.
- exact H_tail.
Qed.
Lemma subst_bvar_reflexivity: forall t k,
open_tm_tm_h (tm_bvar k) t k = t.
Proof.
intros. simpl.
destruct (k =? k) eqn: H_eq.
- reflexivity.
- apply nat_eqb_neq in H_eq. contradiction.
Qed.
Lemma subst_bvar_depth_irrelevant: forall t n k,
n > k ->
open_tm_tm_h (tm_bvar n) t k = tm_bvar n.
Proof.
intros. simpl.
destruct (k =? n) eqn: H_eq.
- apply nat_eqb_eq in H_eq; subst. lia.
- reflexivity.
Qed.
Lemma substitution_tm : forall Gamma Delta x t e T1 T2,
has_type ((x, T1) :: Gamma) Delta t T2 ->
has_type Gamma Delta e T1 ->
has_type Gamma Delta (open_tm_tm_h t e 0) T2.
Proof.
intros Gamma Delta x t e T U Ht He.
generalize dependent T.
induction t; intros T Ht; inversion Ht; simpl; subst; eauto.
-
Admitted.
Lemma substitution_ty : forall Gamma Delta X T t U,
has_type Gamma (X :: Delta) t T ->
closed_ty U ->
has_type Gamma Delta (open_tm_ty_h t U 0) T.
Proof.
Admitted.