Skip to content

jaminthorns/spam-classifier

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Spam Classifier

This is a spam classifier that uses naive Bayesian probability. I created it as a proof of concept spam filter for a college course.

The classifier first takes a body of known spam and ham (non-spam) emails to evaluate. Then, it evaluates each email in a test body of emails as spam or ham, with the difference between ham and spam only known to the classifier for the purpose of calculating the success rate.

Several parameters can be changed to optimize the effectiveness of the classifier. By tweaking these parameters, rates in the upper 90% range for both spam and ham classification can be reached.

Included is a sample of Apache SpamAssassin’s public corpus of spam and ham emails for testing. I've also included the paper I wrote and the presentation I created for the project. These both detail the implementation details of the naive Bayesian probabilistic approach to spam filtering and its effectiveness.

Usage is documented in the help output from python spam_classifier.py -h:

usage: spam_classifier.py [-h] [-init_prob_spam INIT_PROB_SPAM]
                          [-occurence_threshold OCCURENCE_THRESHOLD]
                          [-score_threshold SCORE_THRESHOLD]
                          [-phrase_length PHRASE_LENGTH]
                          spam_examples ham_examples spam_test ham_test

Naive Bayes Spam Filter

positional arguments:
  spam_examples         spam example messages folder
  ham_examples          ham example messages folder
  spam_test             test messages folder
  ham_test              test messages folder

optional arguments:
  -h, --help            show this help message and exit
  -init_prob_spam INIT_PROB_SPAM
                        initial probability of a message being spam (0-1)
  -occurence_threshold OCCURENCE_THRESHOLD
                        number of times a word must appear in spam and ham
                        messages overall
  -score_threshold SCORE_THRESHOLD
                        spam score above which a message must be rated to be
                        considered spam (0-1)
  -phrase_length PHRASE_LENGTH
                        maximum length of word phrases considered (higher
                        phrase lengths will impact performance)

Example

As an example, this is what the tweaked input values for the supplied test data look like:

python spam_classifier.py spam_examples ham_examples spam_test ham_test
       -init_prob_spam 0.7 -occurence_threshold 5 -phrase_length 5

After evaluating the contents of the emails (which can take a few seconds given that a phrase length of 5 was used), the classification success rates are displayed:

Spam success rate: 98.00%
Ham success rate: 99.50%

About

A naive Bayes spam classifier written in Python

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published