-
Notifications
You must be signed in to change notification settings - Fork 0
/
dialogue_management_model.py
47 lines (38 loc) · 1.58 KB
/
dialogue_management_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import logging
from rasa_core.policies.fallback import FallbackPolicy
from rasa_core.agent import Agent
from rasa_core.policies.keras_policy import KerasPolicy
from rasa_core.policies.memoization import MemoizationPolicy
from rasa_core.interpreter import RasaNLUInterpreter
from rasa_core.train import online
from rasa_core.utils import EndpointConfig
from rasa_core.run import serve_application
logger = logging.getLogger(__name__)
def train_dialogue(domain_file = 'malu_domain.yml',
model_path = './models/dialogue',
training_data_file = './data/stories.md'):
fallback = FallbackPolicy(fallback_action_name="action_default_fallback",
core_threshold=0.01,
nlu_threshold=0.01)
agent = Agent(domain_file, policies = [MemoizationPolicy(max_history=2), KerasPolicy(), fallback])
data = agent.load_data(training_data_file)
agent.train(
data,
epochs = 300,
batch_size = 50,
validation_split = 0.2)
agent.persist(model_path)
return agent
def run_malu_bot(serve_forever=True):
interpreter = RasaNLUInterpreter('./models/nlu/default/malu') #carrega o modelo de nlu
action_endpoint = EndpointConfig(url="http://localhost:5055/webhook")
agent = Agent.load('./models/dialogue', interpreter=interpreter, action_endpoint=action_endpoint) #carregar um agente
serve_application(agent ,channel='cmdline')
return agent
if __name__ == '__main__':
train_dialogue()
run_malu_bot()