-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathUVA_10061.cpp
133 lines (122 loc) · 3.55 KB
/
UVA_10061.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
#include <bits/stdc++.h>
using namespace std;
#define F first
#define S second
#define PB push_back
#define PF push_front
#define P push
#define INC(i,a,b) for (ll i = a; i <= b; i++)
#define DEC(i,b,a) for (ll i = b; i >= a ; i--)
#define inf LLONG_MAX
#define neginf LLONG_MIN
#define mod 1000000007
#define eps 1e-9
typedef ostringstream OS ;
typedef stringstream SS ;
typedef long long ll ;
typedef unsigned long long ull;
typedef pair < ll , ll > PLL ;
typedef pair < char,ll > PCL ;
typedef deque < double > DD ;
typedef deque < PCL > DCL ;
typedef deque < ll > DL ;
typedef deque < PLL > DLL ;
typedef deque < char > DC ;
typedef deque < string > DS ;
typedef vector < double > VD;
typedef vector < PCL > VCL ;
typedef vector < ll > VL;
typedef vector < PLL > VLL ;
typedef vector < char > VC ;
typedef vector < string > VS ;
typedef map < ll ,ll > MLL ;
typedef map < char,ll > MCL;
typedef map < ll,char > MLC;
typedef map < string,ll> MSL;
typedef priority_queue < PLL > PQLL ;
typedef priority_queue < ll > PQL ;
typedef stack < ll > SKL ;
typedef stack < PLL > SKLL ;
typedef queue < ll > QL ;
typedef queue < PLL > QLL ;
typedef set < ll > SL ;
typedef set < PLL > SLL ;
typedef set < char > SC ;
string numtostr(ll n) {
OS str1 ;
str1 << n ;
return str1.str();
}
ll strtonum(string s) {
ll x ;
SS str1(s);
str1 >> x ;
return x ;
}
ll GCD(ll a, ll b) {
if ( b == 0 ) return a ;
else return GCD(b,a%b);
}
ll LCM(ll a , ll b) {
ll gcd = GCD(a,b);
return (a/gcd)*b ;
}
ll leastprime[1000];
ll digits_of_n_factorial_in_b_base( ll n, ll b) {
double x = 0;
for ( ll i = 1; i <= n; i++ ) {
x += log10 ( i ) / log10(b);
}
ll res = x + 1 + eps;
return res;
}
void findingleastprime(ll n) {
leastprime[1] = 1 ; // 1 is the least prime factor of itself ;
for ( ll i = 2 ; i <= n ; i = i+2 ) leastprime[i] = 2 ; //evey even number's least prime factors is 2
for ( ll i = 3 ; i <= n ; i = i+2) {
/* we are checking whether number i has a least prime factor ?
it it has a least prime factor then all of the multiples of i will
have the same least prime factor of i . So we don't need to go further .if
it doesn't have a least prime factor then we will go forward and mark all of it's multiples
which are not marked earlier will mark them by i .
*/
if ( leastprime[i] == 0) {
leastprime[i] = i ; // the number is a prime that's why it's least prime factor will be the numbers itself
for ( ll j = i*i ; j <= n ; j = j+i ) {
if ( leastprime[j] == 0) leastprime[j] = i ; // the number which are not marked earlier by any other small prime number will be marked now .
}
}
}
}
MLL primefactoraization(ll n) {
MLL primefactors ;
while( n!=1) {
primefactors[leastprime[n]]++;
n = n/leastprime[n];
}
return primefactors ;
}
ll factorialpower(ll n,ll p) {
ll freq = 0 ;
while(n) {
freq += n/p;
n = n/p;
}
return freq ;
}
int main() {
ios::sync_with_stdio(0);
cin.tie(0);
findingleastprime(805);
ll n,b ;
while(scanf("%lld %lld",&n,&b) == 2) {
MLL factors = primefactoraization(b);
ll trailingzero = inf ;
for ( auto it = factors.begin() ; it != factors.end() ; it++ ) {
ll val = factorialpower(n,it->first);
trailingzero = min(trailingzero,val/it->second);
}
printf("%lld %lld\n",trailingzero,digits_of_n_factorial_in_b_base(n,b));
}
return 0 ;
}