-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlexicographic_permutations.py
73 lines (61 loc) · 1.91 KB
/
lexicographic_permutations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
'''
Sharpen your saw
Lexicographic permutations guarentees that your permutation follows a sorted
order. In other words, the sequence of permutations would the same as in a
dictionary.
Example
The Lexicographic permutations for the set {1,2,3,4} results as:
{1,2,3,4} {2,1,3,4} {3,1,2,4} {4,1,2,3}
{1,2,4,3} {2,1,4,3} {3,1,4,2} {4,1,3,2}
{1,3,2,4} {2,3,1,4} {3,2,1,4} {4,2,1,3}
{1,3,4,2} {2,3,4,1} {3,2,4,1} {4,2,3,1}
{1,4,2,3} {2,4,1,3} {3,4,1,2} {4,3,1,2}
{1,4,3,2} {2,4,3,1} {3,4,2,1} {4,3,2,1}
'''
def swap(items, i, j):
items[i], items[j] = items[j], items[i]
return items
def move_to_left(items):
for i in range(1, len(items)):
if items[i] > items[0]:
return swap(items, i, 0)
def leftward(items, i, j):
return items[:j] + [items[i]] + items[j:i]
def rightward(items, i, j):
return items[:j] + items[i:] + items[j:i]
def permute_subset(items):
permutations = []
end = len(items) - 1
i = end
while i != 1:
swapped = False
for j in range(i-1, 0, -1):
if items[i] > items[j]:
if i-j > 2 and items[i-1] > items[j+1]:
break
if i == end:
items = leftward(items, i, j)
for x in range(j+1,i):
if items[x] > items[x+1]:
items = swap(items, x, x+1)
else:
items = rightward(items, i, j)
permutations += [items]
swapped = True
break
if swapped is False:
i = i - 1
else:
i = end
swapped = False
return permutations
def permute(items):
permutations = []
for i in range(len(items)):
permutations += [items[:]]
permutations += permute_subset(items)
items = move_to_left(items)
return permutations
p = permute([1,2,3,4,5])
for _ in p:
print _