-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfdr_bh.m
211 lines (210 loc) · 8.59 KB
/
fdr_bh.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
% fdr_bh() - Executes the Benjamini & Hochberg (1995) and the Benjamini &
% Yekutieli (2001) procedure for controlling the false discovery
% rate (FDR) of a family of hypothesis tests. FDR is the expected
% proportion of rejected hypotheses that are mistakenly rejected
% (i.e., the null hypothesis is actually true for those tests).
% FDR is a somewhat less conservative/more powerful method for
% correcting for multiple comparisons than procedures like Bonferroni
% correction that provide strong control of the family-wise
% error rate (i.e., the probability that one or more null
% hypotheses are mistakenly rejected).
%
% This function also returns the false coverage-statement rate
% (FCR)-adjusted selected confidence interval coverage (i.e.,
% the coverage needed to construct multiple comparison corrected
% confidence intervals that correspond to the FDR-adjusted p-values).
%
%
% Usage:
% >> [h, crit_p, adj_ci_cvrg, adj_p]=fdr_bh(pvals,q,method,report);
%
% Required Input:
% pvals - A vector or matrix (two dimensions or more) containing the
% p-value of each individual test in a family of tests.
%
% Optional Inputs:
% q - The desired false discovery rate. {default: 0.05}
% method - ['pdep' or 'dep'] If 'pdep,' the original Bejnamini & Hochberg
% FDR procedure is used, which is guaranteed to be accurate if
% the individual tests are independent or positively dependent
% (e.g., Gaussian variables that are positively correlated or
% independent). If 'dep,' the FDR procedure
% described in Benjamini & Yekutieli (2001) that is guaranteed
% to be accurate for any test dependency structure (e.g.,
% Gaussian variables with any covariance matrix) is used. 'dep'
% is always appropriate to use but is less powerful than 'pdep.'
% {default: 'pdep'}
% report - ['yes' or 'no'] If 'yes', a brief summary of FDR results are
% output to the MATLAB command line {default: 'no'}
%
%
% Outputs:
% h - A binary vector or matrix of the same size as the input "pvals."
% If the ith element of h is 1, then the test that produced the
% ith p-value in pvals is significant (i.e., the null hypothesis
% of the test is rejected).
% crit_p - All uncorrected p-values less than or equal to crit_p are
% significant (i.e., their null hypotheses are rejected). If
% no p-values are significant, crit_p=0.
% adj_ci_cvrg - The FCR-adjusted BH- or BY-selected
% confidence interval coverage. For any p-values that
% are significant after FDR adjustment, this gives you the
% proportion of coverage (e.g., 0.99) you should use when generating
% confidence intervals for those parameters. In other words,
% this allows you to correct your confidence intervals for
% multiple comparisons. You can NOT obtain confidence intervals
% for non-significant p-values. The adjusted confidence intervals
% guarantee that the expected FCR is less than or equal to q
% if using the appropriate FDR control algorithm for the
% dependency structure of your data (Benjamini & Yekutieli, 2005).
% FCR (i.e., false coverage-statement rate) is the proportion
% of confidence intervals you construct
% that miss the true value of the parameter. adj_ci=NaN if no
% p-values are significant after adjustment.
% adj_p - All adjusted p-values less than or equal to q are significant
% (i.e., their null hypotheses are rejected). Note, adjusted
% p-values can be greater than 1.
%
%
% References:
% Benjamini, Y. & Hochberg, Y. (1995) Controlling the false discovery
% rate: A practical and powerful approach to multiple testing. Journal
% of the Royal Statistical Society, Series B (Methodological). 57(1),
% 289-300.
%
% Benjamini, Y. & Yekutieli, D. (2001) The control of the false discovery
% rate in multiple testing under dependency. The Annals of Statistics.
% 29(4), 1165-1188.
%
% Benjamini, Y., & Yekutieli, D. (2005). False discovery rate?adjusted
% multiple confidence intervals for selected parameters. Journal of the
% American Statistical Association, 100(469), 71?81. doi:10.1198/016214504000001907
%
%
% Example:
% nullVars=randn(12,15);
% [~, p_null]=ttest(nullVars); %15 tests where the null hypothesis
% %is true
% effectVars=randn(12,5)+1;
% [~, p_effect]=ttest(effectVars); %5 tests where the null
% %hypothesis is false
% [h, crit_p, adj_ci_cvrg, adj_p]=fdr_bh([p_null p_effect],.05,'pdep','yes');
% data=[nullVars effectVars];
% fcr_adj_cis=NaN*zeros(2,20); %initialize confidence interval bounds to NaN
% if ~isnan(adj_ci_cvrg),
% sigIds=find(h);
% fcr_adj_cis(:,sigIds)=tCIs(data(:,sigIds),adj_ci_cvrg); % tCIs.m is available on the
% %Mathworks File Exchagne
% end
%
%
% For a review of false discovery rate control and other contemporary
% techniques for correcting for multiple comparisons see:
%
% Groppe, D.M., Urbach, T.P., & Kutas, M. (2011) Mass univariate analysis
% of event-related brain potentials/fields I: A critical tutorial review.
% Psychophysiology, 48(12) pp. 1711-1725, DOI: 10.1111/j.1469-8986.2011.01273.x
% http://www.cogsci.ucsd.edu/~dgroppe/PUBLICATIONS/mass_uni_preprint1.pdf
%
%
% For a review of FCR-adjusted confidence intervals (CIs) and other techniques
% for adjusting CIs for multiple comparisons see:
%
% Groppe, D.M. (in press) Combating the scientific decline effect with
% confidence (intervals). Psychophysiology.
% http://biorxiv.org/content/biorxiv/early/2015/12/10/034074.full.pdf
%
%
% Author:
% David M. Groppe
% Kutaslab
% Dept. of Cognitive Science
% University of California, San Diego
% March 24, 2010
%%%%%%%%%%%%%%%% REVISION LOG %%%%%%%%%%%%%%%%%
%
% 5/7/2010-Added FDR adjusted p-values
% 5/14/2013- D.H.J. Poot, Erasmus MC, improved run-time complexity
% 10/2015- Now returns FCR adjusted confidence intervals
function [h, crit_p, adj_ci_cvrg, adj_p]=fdr_bh(pvals,q,method,report)
if nargin<1,
error('You need to provide a vector or matrix of p-values.');
else
if ~isempty(find(pvals<0,1)),
error('Some p-values are less than 0.');
elseif ~isempty(find(pvals>1,1)),
error('Some p-values are greater than 1.');
end
end
if nargin<2,
q=.05;
end
if nargin<3,
method='pdep';
end
if nargin<4,
report='no';
end
s=size(pvals);
if (length(s)>2) || s(1)>1,
[p_sorted, sort_ids]=sort(reshape(pvals,1,prod(s)));
else
%p-values are already a row vector
[p_sorted, sort_ids]=sort(pvals);
end
[dummy, unsort_ids]=sort(sort_ids); %indexes to return p_sorted to pvals order
m=length(p_sorted); %number of tests
if strcmpi(method,'pdep'),
%BH procedure for independence or positive dependence
thresh=(1:m)*q/m;
wtd_p=m*p_sorted./(1:m);
elseif strcmpi(method,'dep')
%BH procedure for any dependency structure
denom=m*sum(1./(1:m));
thresh=(1:m)*q/denom;
wtd_p=denom*p_sorted./[1:m];
%Note, it can produce adjusted p-values greater than 1!
%compute adjusted p-values
else
error('Argument ''method'' needs to be ''pdep'' or ''dep''.');
end
if nargout>3,
%compute adjusted p-values; This can be a bit computationally intensive
adj_p=zeros(1,m)*NaN;
[wtd_p_sorted, wtd_p_sindex] = sort( wtd_p );
nextfill = 1;
for k = 1 : m
if wtd_p_sindex(k)>=nextfill
adj_p(nextfill:wtd_p_sindex(k)) = wtd_p_sorted(k);
nextfill = wtd_p_sindex(k)+1;
if nextfill>m
break;
end;
end;
end;
adj_p=reshape(adj_p(unsort_ids),s);
end
rej=p_sorted<=thresh;
max_id=find(rej,1,'last'); %find greatest significant pvalue
if isempty(max_id),
crit_p=0;
h=pvals*0;
adj_ci_cvrg=NaN;
else
crit_p=p_sorted(max_id);
h=pvals<=crit_p;
adj_ci_cvrg=1-thresh(max_id);
end
if strcmpi(report,'yes'),
n_sig=sum(p_sorted<=crit_p);
if n_sig==1,
fprintf('Out of %d tests, %d is significant using a false discovery rate of %f.\n',m,n_sig,q);
else
fprintf('Out of %d tests, %d are significant using a false discovery rate of %f.\n',m,n_sig,q);
end
if strcmpi(method,'pdep'),
fprintf('FDR/FCR procedure used is guaranteed valid for independent or positively dependent tests.\n');
else
fprintf('FDR/FCR procedure used is guaranteed valid for independent or dependent tests.\n');
end
end