forked from MengHao666/Minimal-Hand-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
op_pso.py
170 lines (153 loc) · 6.3 KB
/
op_pso.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import random
import numpy as np
import torch
from manopth.manolayer import ManoLayer
from tqdm import tqdm
from optimize_shape import align_bone_len
from utils import bone
import matplotlib.pyplot as plt
from utils.LM_new import LM_Solver
class PSO:
def __init__(self, parameters, target, _mano_root='mano/models'):
"""
particle swarm optimization
parameter: a list type, like [NGEN, pop_size, var_num_min, var_num_max]
"""
self.mano_layer = ManoLayer(side="right",
mano_root=_mano_root, use_pca=False, flat_hand_mean=True)
# 初始化
self.NGEN = parameters[0]
self.pop_size = parameters[1]
self.var_num = parameters[2].shape[1]
self.bound = []
self.bound.append(parameters[2])
self.bound.append(parameters[3])
self.set_target(target)
def set_target(self, target):
self.target = target.copy()
self.pop_x = np.random.randn(self.pop_size, self.var_num)
self.pop_v = np.random.random((self.pop_size, self.var_num))
self.p_best = self.pop_x.copy()
self.p_best_fit = self.batch_new_get_loss(self.pop_x)
g_best_index = np.argmin(self.p_best_fit, axis=0)
if g_best_index.shape[0] > 1:
g_best_index = g_best_index[[0]]
self.g_best = self.p_best[g_best_index].copy()
def new_cal_ref_bone(self, _shape):
parent_index = [0,
0, 1, 2,
0, 4, 5,
0, 7, 8,
0, 10, 11,
0, 13, 14
]
index = [0,
1, 2, 3, # index
4, 5, 6, # middle
7, 8, 9, # pinky
10, 11, 12, # ring
13, 14, 15] # thumb
reoder_index = [
13, 14, 15,
1, 2, 3,
4, 5, 6,
10, 11, 12,
7, 8, 9]
shape = torch.Tensor(_shape.reshape((-1, 10)))
th_v_shaped = torch.matmul(self.mano_layer.th_shapedirs,
shape.transpose(1, 0)).permute(2, 0, 1) \
+ self.mano_layer.th_v_template
th_j = torch.matmul(self.mano_layer.th_J_regressor, th_v_shaped)
temp1 = th_j.clone().detach()
temp2 = th_j.clone().detach()[:, parent_index, :]
result = temp1 - temp2
result = torch.norm(result, dim=-1, keepdim=True)
ref_len = result[:, [4]]
result = result / ref_len
return torch.squeeze(result, dim=-1)[:, reoder_index].cpu().numpy()
def batch_new_get_loss(self, beta_):
weight = 1e-3
beta = beta_.copy()
temp = self.new_cal_ref_bone(beta)
loss = np.linalg.norm(temp - self.target, axis=-1, keepdims=True) ** 2 + \
weight * np.linalg.norm(beta, axis=-1, keepdims=True)
return loss
def update_operator(self, pop_size):
c1 = 2
c2 = 2
w = 0.4
self.pop_v = w * self.pop_v \
+ c1 * np.multiply(np.random.rand(pop_size, 1), (self.p_best - self.pop_x)) \
+ c2 * np.multiply(np.random.rand(pop_size, 1), (self.g_best - self.pop_x))
self.pop_x = self.pop_x + self.pop_v
low_flag = self.pop_x < self.bound[0]
up_flag = self.pop_x > self.bound[1]
self.pop_x[low_flag] = -3.0
self.pop_x[up_flag] = 3.0
temp = self.batch_new_get_loss(self.pop_x)
p_best_flag = temp < self.p_best_fit
p_best_flag = p_best_flag.reshape((pop_size,))
self.p_best[p_best_flag] = self.pop_x[p_best_flag]
self.p_best_fit[p_best_flag] = temp[p_best_flag]
g_best_index = np.argmin(self.p_best_fit, axis=0)
if g_best_index.shape[0] > 1:
g_best_index = g_best_index[[0]]
self.g_best = self.pop_x[g_best_index]
self.g_best_fit = self.p_best_fit[g_best_index][0][0]
def main(self, slover=None, return_err=False):
best_fit = []
self.ng_best = np.zeros((1, self.var_num))
self.ng_best_fit = self.batch_new_get_loss(self.ng_best)[0][0]
for gen in range(self.NGEN):
self.update_operator(self.pop_size)
# print('############ Generation {} ############'.format(str(gen + 1)))
dis = self.g_best_fit - self.ng_best_fit
if self.g_best_fit < self.ng_best_fit:
self.ng_best = self.g_best.copy()
self.ng_best_fit = self.g_best_fit
if abs(dis) < 1e-6:
break
# print(':{}'.format(self.ng_best))
# print(':{}'.format(self.ng_best_fit))
# best_fit.append(self.ng_best_fit)
# print("---- End of (successful) Searching ----")
#
# plt.figure()
# plt.title("Figure1")
# plt.xlabel("iterators", size=14)
# plt.ylabel("fitness", size=14)
# t = [t for t in range(self.NGEN)]
# plt.plot(t, best_fit, color='b', linewidth=2)
# plt.show()
if return_err:
err = solver.new_cal_ref_bone(self.ng_best)
err = align_bone_len(err, self.target)
return err
if __name__ == '__main__':
import time
data_set = ['rhd', 'stb', 'do', 'eo']
for data in data_set:
solver = LM_Solver(num_Iter=500, th_beta=torch.zeros((1, 10)), th_pose=torch.zeros((1, 48)),
lb_target=np.zeros((15, 1)),
weight=1e-5)
NGEN = 100
popsize = 100
low = np.zeros((1, 10)) - 3.0
up = np.zeros((1, 10)) + 3.0
parameters = [NGEN, popsize, low, up]
err = np.zeros((1, 15))
path = 'out_testset/' + data + '_pre_joints.npy'
print('load:{}'.format(path))
target = np.load(path)
pso_shape = np.zeros((target.shape[0], 10))
for i in tqdm(range(target.shape[0])):
_target = target[[0]]
_target = bone.caculate_length(_target, label='useful')
_target = _target.reshape((1, 15))
pso = PSO(parameters, _target)
err += pso.main(slover=solver, return_err=True)
pso_shape[[i]] = pso.ng_best
print(err.sum() / target.shape[0])
save_path = 'out_testset/' + data + '_pso.npy'
print('save:{}'.format(save_path))
np.save(save_path, pso_shape)