forked from MengHao666/Minimal-Hand-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
demo_dl.py
146 lines (132 loc) · 5.15 KB
/
demo_dl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import cv2
import torch
from manopth import manolayer
from model.detnet import detnet
from utils import func, bone, AIK, smoother
import numpy as np
import matplotlib.pyplot as plt
from utils import vis
from op_pso import PSO
import open3d
from model import shape_net
import os
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
_mano_root = 'mano/models'
module = detnet().to(device)
print('load model start')
check_point = torch.load('new_check_point/ckp_detnet_83.pth', map_location=device)
model_state = module.state_dict()
state = {}
for k, v in check_point.items():
if k in model_state:
state[k] = v
else:
print(k, ' is NOT in current model')
model_state.update(state)
module.load_state_dict(model_state)
print('load model finished')
shape_model = shape_net.ShapeNet()
shape_net.load_checkpoint(
shape_model, os.path.join('checkpoints', 'ckp_siknet_synth_41.pth.tar')
)
for params in shape_model.parameters():
params.requires_grad = False
pose, shape = func.initiate("zero")
pre_useful_bone_len = np.zeros((1, 15))
pose0 = torch.eye(3).repeat(1, 16, 1, 1)
mano = manolayer.ManoLayer(flat_hand_mean=True,
side="right",
mano_root=_mano_root,
use_pca=False,
root_rot_mode='rotmat',
joint_rot_mode='rotmat')
print('start opencv')
point_fliter = smoother.OneEuroFilter(4.0, 0.0)
mesh_fliter = smoother.OneEuroFilter(4.0, 0.0)
shape_fliter = smoother.OneEuroFilter(4.0, 0.0)
cap = cv2.VideoCapture(0)
print('opencv finished')
flag = 1
plt.ion()
f = plt.figure()
fliter_ax = f.add_subplot(111, projection='3d')
plt.show()
view_mat = np.array([[1.0, 0.0, 0.0],
[0.0, -1.0, 0],
[0.0, 0, -1.0]])
mesh = open3d.geometry.TriangleMesh()
hand_verts, j3d_recon = mano(pose0, shape.float())
mesh.triangles = open3d.utility.Vector3iVector(mano.th_faces)
hand_verts = hand_verts.clone().detach().cpu().numpy()[0]
mesh.vertices = open3d.utility.Vector3dVector(hand_verts)
viewer = open3d.visualization.Visualizer()
viewer.create_window(width=480, height=480, window_name='mesh')
viewer.add_geometry(mesh)
viewer.update_renderer()
print('start pose estimate')
pre_uv = None
shape_time = 0
opt_shape = None
shape_flag = True
while (cap.isOpened()):
ret_flag, img = cap.read()
input = np.flip(img.copy(), -1)
k = cv2.waitKey(1) & 0xFF
if input.shape[0] > input.shape[1]:
margin = (input.shape[0] - input.shape[1]) // 2
input = input[margin:-margin]
else:
margin = (input.shape[1] - input.shape[0]) // 2
input = input[:, margin:-margin]
img = input.copy()
img = np.flip(img, -1)
cv2.imshow("Capture_Test", img)
input = cv2.resize(input, (128, 128))
input = torch.tensor(input.transpose([2, 0, 1]), dtype=torch.float, device=device) # hwc -> chw
input = func.normalize(input, [0.5, 0.5, 0.5], [1, 1, 1])
result = module(input.unsqueeze(0))
pre_joints = result['xyz'].squeeze(0)
now_uv = result['uv'].clone().detach().cpu().numpy()[0, 0]
now_uv = now_uv.astype(np.float)
trans = np.zeros((1, 3))
trans[0, 0:2] = now_uv - 16.0
trans = trans / 16.0
new_tran = np.array([[trans[0, 1], trans[0, 0], trans[0, 2]]])
pre_joints = pre_joints.clone().detach().cpu().numpy()
flited_joints = point_fliter.process(pre_joints)
fliter_ax.cla()
filted_ax = vis.plot3d(flited_joints + new_tran, fliter_ax)
pre_useful_bone_len = bone.caculate_length(pre_joints, label="useful")
shape_model_input = torch.tensor(pre_useful_bone_len, dtype=torch.float)
shape_model_input = shape_model_input.reshape((1, 15))
dl_shape = shape_model(shape_model_input)
dl_shape = dl_shape['beta'].numpy()
dl_shape = shape_fliter.process(dl_shape)
opt_tensor_shape = torch.tensor(dl_shape, dtype=torch.float)
_, j3d_p0_ops = mano(pose0, opt_tensor_shape)
template = j3d_p0_ops.cpu().numpy().squeeze(0) / 1000.0 # template, m 21*3
ratio = np.linalg.norm(template[9] - template[0]) / np.linalg.norm(pre_joints[9] - pre_joints[0])
j3d_pre_process = pre_joints * ratio # template, m
j3d_pre_process = j3d_pre_process - j3d_pre_process[0] + template[0]
pose_R = AIK.adaptive_IK(template, j3d_pre_process)
pose_R = torch.from_numpy(pose_R).float()
# reconstruction
hand_verts, j3d_recon = mano(pose_R, opt_tensor_shape.float())
mesh.triangles = open3d.utility.Vector3iVector(mano.th_faces)
hand_verts = hand_verts.clone().detach().cpu().numpy()[0]
hand_verts = mesh_fliter.process(hand_verts)
hand_verts = np.matmul(view_mat, hand_verts.T).T
hand_verts[:, 0] = hand_verts[:, 0] - 50
hand_verts[:, 1] = hand_verts[:, 1] - 50
mesh_tran = np.array([[-new_tran[0, 0], new_tran[0, 1], new_tran[0, 2]]])
hand_verts = hand_verts - 100 * mesh_tran
mesh.vertices = open3d.utility.Vector3dVector(hand_verts)
mesh.paint_uniform_color([228 / 255, 178 / 255, 148 / 255])
mesh.compute_triangle_normals()
mesh.compute_vertex_normals()
viewer.update_geometry(mesh)
viewer.poll_events()
if k == ord('q'):
break
cap.release()
cv2.destroyAllWindows()