-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrun_models.sh
21 lines (15 loc) · 1010 Bytes
/
run_models.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
#!/bin/sh
# This script runs vectorization pipeline on imagefile provided (.png or .jpg)
image=${1:-"images/Cylindrical_Parts_011_1.png"}
filename=$(basename ${image})
logfolder=${2:-"images/"}
backdepthfile=npz/${filename//.png/_backdepth.npz}
depthfile=npz/${filename//.png/_depth.npz}
segmfile=npz/${filename//.png/_segm.npz}
normfile=npz/${filename//.png/_norms.npz}
echo $image - $depthfile
python evaluate_model.py --image $image --depth --ckpt models/depth_03_12_top_epoch_35-valid_loss=0.0000836.ckpt --out ${logfolder}/${depthfile} --plots --saveto ${logfolder}/reports/
echo $image - $segmfile
python evaluate_model.py --image $image --segm --ckpt models/segm_02_14_top_epoch_35-valid_dataset_iou=0.9972253.ckpt --out ${logfolder}/${segmfile} --plots --saveto ${logfolder}/reports/
echo $image - $normfile
python evaluate_model.py --image $image --normals --ckpt models/normals_11_01_top_epoch_34-valid1_loss=0.0380605.ckpt --out ${logfolder}/${normfile} --plots --saveto ${logfolder}/reports/