-
Notifications
You must be signed in to change notification settings - Fork 0
/
t4.py
159 lines (140 loc) · 3.27 KB
/
t4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# -*- coding: utf-8 -b*-
from textblob import Word
import string
from textblob.classifiers import NaiveBayesClassifier
from textblob import TextBlob
from stemming.porter2 import stem
import nltk
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
import time
import pickle
import signal
import sys
#nltk.download('stopwords') #THIS line needed to be execeuted once on a system
def detect_language(line):
line = unicode(line, "utf-8")
maxchar = max(line)
if u'\u0900' <= maxchar <= u'\u097f':
return 'hindi'
return 'english'
train = [
('water', 'water'),
('log', 'water'),
('jal', 'water'),
('drainag', 'water'),
('sewag', 'water'),
('burgler', 'police'),
('thief', 'police'),
('robbery', 'police'),
('murder', 'police'),
('medicin', 'doctor'),
('ill', 'doctor'),
('sick', 'doctor'),
('accident', 'doctor'),
('dog', 'municipal'),
('waste', 'municipal'),
('garbage', 'municipal'),
('illegal', 'police'),
('animal', 'municipal'),
('light', 'electrical'),
(u'दवा', 'doctor'),
(u'बीमार', 'doctor'),
]
#cl=NaiveBayesClassifier(tr)
#cl = NaiveBayesClassifier(train)
def load_Train():
f=None
global linecount
global cl
try:
f = open('train.pickle', 'rb')
cl = pickle.load(f)
f.close()
fl=open("nol","r")
linecount=int(fl.read())
fl.close()
f.close()
except Exception, e:
cl = NaiveBayesClassifier(train)
linecount=0
print("No of lines="+str(linecount))
return cl
def signal_handler(signal, frame):
f=open("train.pickle","wb")
fl=open("nol","wb")
fl.write(str(linecount))
fl.close()
print("Dumping data.....")
pickle.dump(cl,f);
f.close()
print("Dumping Complete")
sys.exit(0)
signal.signal(signal.SIGINT, signal_handler)
def stemm(a):
a=a.lower()
#print ord(a[0])
replace_punctuation = string.maketrans(string.punctuation, ' '*len(string.punctuation))
a = a.translate(replace_punctuation)
stop_words = set(stopwords.words('english'))
word_tokens = word_tokenize(a)
filtered_sentence = [w for w in word_tokens if not w in stop_words]
filtered_sentence = []
for w in word_tokens:
if w not in stop_words:
b=Word(w)
#t=t.replace(w,b.lemmatize())
# use porterstemming for faster
filtered_sentence.append(stem(b))
a=' '.join(filtered_sentence)
print("lamentized sentence by porter ="+a)
return a
def categorize(a):
if(detect_language(a)=='english'):
a=stemm(a)
ans=cl.classify(a)
return ans
pass
#fw='दवा'
linecount=0
cl=load_Train()
print("linecount1="+str(linecount))
i=0
print cl
stop_words = set(stopwords.words('english'))
for w,l in train:
if w not in stop_words:
b=Word(w)
#t=t.replace(w,b.lemmatize())
# use porterstemming for faster
train[i]=(stem(b),l)
i=i+1
print train
ff=file("train")
lc=0
if(linecount!=0):
lc=linecount
linecount=0
print("linecount2="+str(lc))
while (0<1):
a=raw_input("enter\n")
#a=line
#a='दवा'
ans=categorize(a)
print(ans)
print(cl)
fb=raw_input("correct or not y/correct value \n")
if(fb=="y"):
print ("yes")
fe=[(a,ans)]
cl.update(fe)
#train.append([inp,ans])
elif(fb=="new"):
a=raw_input("Enter a sentence\n")
print(cl.classify(a))
elif(fb!="n" and fb!=''):
print ("no")
fe=[(a,fb)]
cl.update(fe)
# print(a)
print("\n")