-
Notifications
You must be signed in to change notification settings - Fork 0
/
t1.py
92 lines (80 loc) · 2.09 KB
/
t1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
# -*- coding: utf-8
from textblob import Word
import string
from textblob.classifiers import NaiveBayesClassifier
from textblob import TextBlob
from stemming.porter2 import stem
import nltk
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
import time
#nltk.download('stopwords')
def detect_language(line):
line = unicode(line, "utf-8")
maxchar = max(line)
if u'\u0900' <= maxchar <= u'\u097f':
return 'hindi'
return 'english'
train = [
('water', 'water'),
('log', 'water'),
('jal', 'water'),
('drainag', 'water'),
('sewag', 'water'),
('burgler', 'police'),
('thief', 'police'),
('robbery', 'police'),
('murder', 'police'),
('medicin', 'doctor'),
('ill', 'doctor'),
('sick', 'doctor'),
('accident', 'doctor'),
('dog', 'municipal'),
('waste', 'municipal'),
('garbage', 'municipal'),
('illegal', 'police'),
('animal', 'municipal'),
('light', 'electrical'),
(u'दवा', 'doctor'),
(u'बीमार', 'doctor'),
]
cl = NaiveBayesClassifier(train)
while 0<1:
start = time.time()
a=raw_input("Input.......\n")
#a='दवा'
at=a
if(detect_language(a)=='english'):
a=a.lower()
#print ord(a[0])
replace_punctuation = string.maketrans(string.punctuation, ' '*len(string.punctuation))
a = a.translate(replace_punctuation)
stop_words = set(stopwords.words('english'))
word_tokens = word_tokenize(a)
filtered_sentence = [w for w in word_tokens if not w in stop_words]
filtered_sentence = []
for w in word_tokens:
if w not in stop_words:
b=Word(w)
#t=t.replace(w,b.lemmatize())
# use porterstemming for faster
filtered_sentence.append(stem(b))
a=' '.join(filtered_sentence)
print("lamentized sentence by porter ="+a)
#fw='दवा'
ans=cl.classify(a)
print(ans)
print(cl)
#print(time.time()-start)
if(detect_language(at)=='hindi'):
a = unicode(a, "utf-8")
fb=raw_input("correct or not y/correct value \n")
if(fb=="y"):
fe=[(a,ans)]
cl.update(fe)
#train.append([inp,ans])
elif(fb!="n"):
fe=[(a,fb)]
cl.update(fe)
# print(a)
print("\n")