Skip to content

Latest commit

 

History

History
61 lines (52 loc) · 2.12 KB

File metadata and controls

61 lines (52 loc) · 2.12 KB

Spatial attention recurrent neural network (SARNN)

Install

See here for installation.

Dataset preparation

Collect demonstration data by teleoperation.

Generate a npy format dataset for learning from teleoperation data:

$ python ../utils/make_dataset.py \
--in_dir ../teleop/teleop_data/<demo_name> --out_dir ./data/<demo_name> \
--train_ratio 0.8 --nproc `nproc` --skip 6 --cropped_img_size 280 --resized_img_size 64

The --cropped_img_size option should be specified appropriately for each task.

Visualize the generated data (optional):

$ python ../utils/check_data.py --in_dir ./data/<demo_name> --idx 0

Model training

Train a model:

$ python ./bin/TrainSarnn.py \
--data_dir ./data/<demo_name> --log_dir ./log/<demo_name> \
--no_side_image --no_wrench --with_mask

The checkpoint file SARNN.pth is saved in the directory specified by the --log_dir option.

Visualize an animation of prediction (optional):

$ python ./bin/test.py --data_dir ./data/<demo_name> --filename ./log/<demo_name>/SARNN.pth --no_side_image --no_wrench

Visualize the internal representation of the RNN in prediction (optional):

$ python ./bin/test_pca.py --data_dir ./data/<demo_name> --filename ./log/<demo_name>/SARNN.pth --no_side_image --no_wrench

Policy rollout

Run a trained policy:

$ python ./bin/rollout/RolloutSarnnMujocoUR5eCable.py \
--checkpoint ./log/<demo_name>/SARNN.pth \
--cropped_img_size 280 --skip 6 --world_idx 0

The --cropped_img_size option must be the same as for dataset generation.

Technical Details

For more information on the technical details, please see the following paper:

@INPROCEEDINGS{SARNN_ICRA2022,
  author = {Ichiwara, Hideyuki and Ito, Hiroshi and Yamamoto, Kenjiro and Mori, Hiroki and Ogata, Tetsuya},
  title = {Contact-Rich Manipulation of a Flexible Object based on Deep Predictive Learning using Vision and Tactility},
  booktitle = {International Conference on Robotics and Automation},
  year = {2022},
  pages = {5375-5381},
  doi = {10.1109/ICRA46639.2022.9811940}
}