-
Notifications
You must be signed in to change notification settings - Fork 220
/
humanoid.py
141 lines (123 loc) · 5.84 KB
/
humanoid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import math
import numpy as np
import torch
from omni.isaac.core.articulations import ArticulationView
from omni.isaac.core.utils.prims import get_prim_at_path
from omni.isaac.core.utils.torch.maths import tensor_clamp, torch_rand_float, unscale
from omni.isaac.core.utils.torch.rotations import compute_heading_and_up, compute_rot, quat_conjugate
from omniisaacgymenvs.tasks.base.rl_task import RLTask
from omniisaacgymenvs.robots.articulations.humanoid import Humanoid
from omniisaacgymenvs.tasks.shared.locomotion import LocomotionTask
from pxr import PhysxSchema
class HumanoidLocomotionTask(LocomotionTask):
def __init__(self, name, sim_config, env, offset=None) -> None:
self.update_config(sim_config)
self._num_observations = 87
self._num_actions = 21
self._humanoid_positions = torch.tensor([0, 0, 1.34])
LocomotionTask.__init__(self, name=name, env=env)
return
def update_config(self, sim_config):
self._sim_config = sim_config
self._cfg = sim_config.config
self._task_cfg = sim_config.task_config
LocomotionTask.update_config(self)
def set_up_scene(self, scene) -> None:
self.get_humanoid()
RLTask.set_up_scene(self, scene)
self._humanoids = ArticulationView(
prim_paths_expr="/World/envs/.*/Humanoid/torso", name="humanoid_view", reset_xform_properties=False
)
scene.add(self._humanoids)
return
def initialize_views(self, scene):
RLTask.initialize_views(self, scene)
if scene.object_exists("humanoid_view"):
scene.remove_object("humanoid_view", registry_only=True)
self._humanoids = ArticulationView(
prim_paths_expr="/World/envs/.*/Humanoid/torso", name="humanoid_view", reset_xform_properties=False
)
scene.add(self._humanoids)
def get_humanoid(self):
humanoid = Humanoid(
prim_path=self.default_zero_env_path + "/Humanoid", name="Humanoid", translation=self._humanoid_positions
)
self._sim_config.apply_articulation_settings(
"Humanoid", get_prim_at_path(humanoid.prim_path), self._sim_config.parse_actor_config("Humanoid")
)
def get_robot(self):
return self._humanoids
def post_reset(self):
self.joint_gears = torch.tensor(
[
67.5000, # lower_waist
67.5000, # lower_waist
67.5000, # right_upper_arm
67.5000, # right_upper_arm
67.5000, # left_upper_arm
67.5000, # left_upper_arm
67.5000, # pelvis
45.0000, # right_lower_arm
45.0000, # left_lower_arm
45.0000, # right_thigh: x
135.0000, # right_thigh: y
45.0000, # right_thigh: z
45.0000, # left_thigh: x
135.0000, # left_thigh: y
45.0000, # left_thigh: z
90.0000, # right_knee
90.0000, # left_knee
22.5, # right_foot
22.5, # right_foot
22.5, # left_foot
22.5, # left_foot
],
device=self._device,
)
self.max_motor_effort = torch.max(self.joint_gears)
self.motor_effort_ratio = self.joint_gears / self.max_motor_effort
dof_limits = self._humanoids.get_dof_limits()
self.dof_limits_lower = dof_limits[0, :, 0].to(self._device)
self.dof_limits_upper = dof_limits[0, :, 1].to(self._device)
force_links = ["left_foot", "right_foot"]
self._sensor_indices = torch.tensor(
[self._humanoids._body_indices[j] for j in force_links], device=self._device, dtype=torch.long
)
LocomotionTask.post_reset(self)
def get_dof_at_limit_cost(self):
return get_dof_at_limit_cost(self.obs_buf, self.motor_effort_ratio, self.joints_at_limit_cost_scale)
@torch.jit.script
def get_dof_at_limit_cost(obs_buf, motor_effort_ratio, joints_at_limit_cost_scale):
# type: (Tensor, Tensor, float) -> Tensor
scaled_cost = joints_at_limit_cost_scale * (torch.abs(obs_buf[:, 12:33]) - 0.98) / 0.02
dof_at_limit_cost = torch.sum(
(torch.abs(obs_buf[:, 12:33]) > 0.98) * scaled_cost * motor_effort_ratio.unsqueeze(0), dim=-1
)
return dof_at_limit_cost