Input and output are both in *.conllu
format.
combo --mode predict --model_path your_model_tar_gz --input_file your_conllu_file --output_file your_output_file --silent
Works for models where input was text-based only.
Interactive testing in console (load model and just type sentence in console).
combo --mode predict --model_path your_model_tar_gz --input_file "-" --nosilent
Works for models where input was text-based only.
Input: one sentence per line.
Output: List of token jsons.
combo --mode predict --model_path your_model_tar_gz --input_file your_text_file --output_file your_output_file --silent --noconllu_format
There are 2 tokenizers: whitespace and spacy-based (en_core_web_sm
model).
Use either --predictor_name semantic-multitask-predictor
or --predictor_name semantic-multitask-predictor-spacy
.
import combo.predict as predict
model_path = "your_model.tar.gz"
nlp = predict.SemanticMultitaskPredictor.from_pretrained(model_path)
sentence = nlp("Sentence to parse.")