forked from dusty-nv/jetson-inference
-
Notifications
You must be signed in to change notification settings - Fork 0
/
poseNet.h
450 lines (374 loc) · 16.9 KB
/
poseNet.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
/*
* Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#ifndef __POSE_NET_H__
#define __POSE_NET_H__
#include "tensorNet.h"
#include <array>
/**
* Name of default input blob for pose estimation ONNX model.
* @ingroup poseNet
*/
#define POSENET_DEFAULT_INPUT "input"
/**
* Name of default output blob of the confidence map for pose estimation ONNX model.
* @ingroup poseNet
*/
#define POSENET_DEFAULT_CMAP "cmap"
/**
* Name of default output blob of the Part Affinity Field (PAF) for pose estimation ONNX model.
* @ingroup poseNet
*/
#define POSENET_DEFAULT_PAF "paf"
/**
* Default value of the minimum confidence threshold
* @ingroup poseNet
*/
#define POSENET_DEFAULT_THRESHOLD 0.15f
/**
* Default scale used for drawing keypoint circles.
* This scale is multiplied by the largest image dimension to arrive at the radius.
* @ingroup poseNet
*/
#define POSENET_DEFAULT_KEYPOINT_SCALE 0.0052f
/**
* Default scale used for drawing link lines.
* This scale is multiplied by the largest image dimension to arrive at the line width.
* @ingroup poseNet
*/
#define POSENET_DEFAULT_LINK_SCALE 0.0013f
/**
* Standard command-line options able to be passed to poseNet::Create()
* @ingroup imageNet
*/
#define POSENET_USAGE_STRING "poseNet arguments: \n" \
" --network=NETWORK pre-trained model to load, one of the following:\n" \
" * resnet18-body (default)\n" \
" * resnet18-hand\n" \
" * densenet121-body\n" \
" --model=MODEL path to custom model to load (caffemodel, uff, or onnx)\n" \
" --prototxt=PROTOTXT path to custom prototxt to load (for .caffemodel only)\n" \
" --labels=LABELS path to text file containing the labels for each class\n" \
" --input-blob=INPUT name of the input layer (default is '" POSENET_DEFAULT_INPUT "')\n" \
" --output-cvg=COVERAGE name of the coverge output layer (default is '" POSENET_DEFAULT_CMAP "')\n" \
" --output-bbox=BOXES name of the bounding output layer (default is '" POSENET_DEFAULT_PAF "')\n" \
" --mean-pixel=PIXEL mean pixel value to subtract from input (default is 0.0)\n" \
" --batch-size=BATCH maximum batch size (default is 1)\n" \
" --threshold=THRESHOLD minimum threshold for detection (default is 0.5)\n" \
" --overlay=OVERLAY detection overlay flags (e.g. --overlay=links,keypoints)\n" \
" valid combinations are: 'box', 'links', 'keypoints', 'none'\n" \
" --keypoint-scale=X radius scale for keypoints, relative to image (default: 0.0052)\n" \
" --link-scale=X line width scale for links, relative to image (default: 0.0013)\n" \
" --profile enable layer profiling in TensorRT\n\n"
/**
* Pose estimation models with TensorRT support.
* @ingroup poseNet
*/
class poseNet : public tensorNet
{
public:
/**
* The pose of an object, composed of links between keypoints.
* Each image can have multiple objects detected per frame.
*/
struct ObjectPose
{
uint32_t ID; /**< Object ID in the image frame, starting with 0 */
float Left; /**< Bounding box left, as determined by the left-most keypoint in the pose */
float Right; /**< Bounding box right, as determined by the right-most keypoint in the pose */
float Top; /**< Bounding box top, as determined by the top-most keypoint in the pose */
float Bottom; /**< Bounding box bottom, as determined by the bottom-most keypoint in the pose */
/**
* A keypoint or joint in the topology. A link is formed between two keypoints.
*/
struct Keypoint
{
uint32_t ID; /**< Type ID of the keypoint - the name can be retrieved with poseNet::GetKeypointName() */
float x; /**< The x coordinate of the keypoint */
float y; /**< The y coordinate of the keypoint */
};
std::vector<Keypoint> Keypoints; /**< List of keypoints in the object, which contain the keypoint ID and x/y coordinates */
std::vector<std::array<uint32_t, 2>> Links; /**< List of links in the object. Each link has two keypoint indexes into the Keypoints list */
/**< Find a keypoint index by it's ID, or return -1 if not found. This returns an index into the Keypoints list */
inline int FindKeypoint(uint32_t id) const;
/**< Find a link index by two keypoint ID's, or return -1 if not found. This returns an index into the Links list */
inline int FindLink(uint32_t a, uint32_t b) const;
};
/**
* Overlay flags (can be OR'd together).
*/
enum OverlayFlags
{
OVERLAY_NONE = 0, /**< No overlay. */
OVERLAY_BOX = (1 << 0), /**< Overlay object bounding boxes */
OVERLAY_LINKS = (1 << 1), /**< Overlay the skeleton links (bones) as lines */
OVERLAY_KEYPOINTS = (1 << 2), /**< Overlay the keypoints (joints) as circles */
OVERLAY_DEFAULT = OVERLAY_LINKS|OVERLAY_KEYPOINTS,
};
/**
* Network choice enumeration.
*/
enum NetworkType
{
CUSTOM = 0, /**< Custom model from user */
RESNET18_BODY, /**< ResNet18-based human body model with PAF attention */
RESNET18_HAND, /**< ResNet18-based human hand model with PAF attention */
DENSENET121_BODY, /**< DenseNet121-based human body model with PAF attention */
};
/**
* Parse a string to one of the built-in pretrained models.
* @returns one of the poseNet::NetworkType enums, or poseNet::CUSTOM on invalid string.
*/
static NetworkType NetworkTypeFromStr( const char* model_name );
/**
* Parse a string sequence into OverlayFlags enum.
* Valid flags are "none", "box", "label", and "conf" and it is possible to combine flags
* (bitwise OR) together with commas or pipe (|) symbol. For example, the string sequence
* "box,label,conf" would return the flags `OVERLAY_BOX|OVERLAY_LABEL|OVERLAY_CONFIDENCE`.
*/
static uint32_t OverlayFlagsFromStr( const char* flags );
/**
* Load a new network instance
* @param networkType type of pre-supported network to load
* @param threshold default minimum threshold for detection
* @param maxBatchSize The maximum batch size that the network will support and be optimized for.
*/
static poseNet* Create( NetworkType networkType=RESNET18_BODY, float threshold=POSENET_DEFAULT_THRESHOLD,
uint32_t maxBatchSize=DEFAULT_MAX_BATCH_SIZE, precisionType precision=TYPE_FASTEST,
deviceType device=DEVICE_GPU, bool allowGPUFallback=true );
/**
* Load a custom network instance
* @param model_path File path to the ONNX model
* @param topology File path to the topology JSON
* @param colors File path to the keypoint colors text file
* @param threshold default minimum confidence thrshold
* @param input Name of the input layer blob.
* @param cmap Name of the output confidence map layer.
* @param paf Name of the output Part Affinity Field (PAF) layer.
* @param maxBatchSize The maximum batch size that the network will support and be optimized for.
*/
static poseNet* Create( const char* model_path, const char* topology, const char* colors,
float threshold=POSENET_DEFAULT_THRESHOLD,
const char* input = POSENET_DEFAULT_INPUT,
const char* cmap = POSENET_DEFAULT_CMAP,
const char* paf = POSENET_DEFAULT_PAF,
uint32_t maxBatchSize=DEFAULT_MAX_BATCH_SIZE,
precisionType precision=TYPE_FASTEST,
deviceType device=DEVICE_GPU, bool allowGPUFallback=true );
/**
* Load a new network instance by parsing the command line.
*/
static poseNet* Create( int argc, char** argv );
/**
* Load a new network instance by parsing the command line.
*/
static poseNet* Create( const commandLine& cmdLine );
/**
* Usage string for command line arguments to Create()
*/
static inline const char* Usage() { return POSENET_USAGE_STRING; }
/**
* Destory
*/
virtual ~poseNet();
/**
* Perform pose estimation on the given image, returning object poses, and overlay the results.
* @param[in] image input image in CUDA device memory (uchar3/uchar4/float3/float4)
* @param[in] width width of the input image in pixels.
* @param[in] height height of the input image in pixels.
* @param[out] poses array of ObjectPose structs that will be filled for each detected object.
* @param[in] overlay bitwise OR combination of overlay flags (@see OverlayFlags and @see Overlay()), or OVERLAY_NONE.
* @returns True on success, or false if an error occurred.
*/
template<typename T> bool Process( T* image, uint32_t width, uint32_t height, std::vector<ObjectPose>& poses, uint32_t overlay=OVERLAY_DEFAULT ) { return Process((void*)image, width, height, imageFormatFromType<T>(), poses, overlay); }
/**
* Perform pose estimation on the given image, and overlay the results.
* @param[in] image input image in CUDA device memory (uchar3/uchar4/float3/float4)
* @param[in] width width of the input image in pixels.
* @param[in] height height of the input image in pixels.
* @param[out] poses array of ObjectPose structs that will be filled for each detected object.
* @param[in] overlay bitwise OR combination of overlay flags (@see OverlayFlags and @see Overlay()), or OVERLAY_NONE.
* @returns True on success, or false if an error occurred.
*/
bool Process( void* image, uint32_t width, uint32_t height, imageFormat format, std::vector<ObjectPose>& poses, uint32_t overlay=OVERLAY_DEFAULT );
/**
* Perform pose estimation on the given image, and overlay the results.
* @param[in] image input image in CUDA device memory (uchar3/uchar4/float3/float4)
* @param[in] width width of the input image in pixels.
* @param[in] height height of the input image in pixels.
* @param[in] overlay bitwise OR combination of overlay flags (@see OverlayFlags and @see Overlay()), or OVERLAY_NONE.
* @returns True on success, or false if an error occurred.
*/
template<typename T> bool Process( T* image, uint32_t width, uint32_t height, uint32_t overlay=OVERLAY_DEFAULT ) { return Process((void*)image, width, height, imageFormatFromType<T>(), overlay); }
/**
* Perform pose estimation on the given image, and overlay the results.
* @param[in] image input image in CUDA device memory (uchar3/uchar4/float3/float4)
* @param[in] width width of the input image in pixels.
* @param[in] height height of the input image in pixels.
* @param[in] overlay bitwise OR combination of overlay flags (@see OverlayFlags and @see Overlay()), or OVERLAY_NONE.
* @returns True on success, or false if an error occurred.
*/
bool Process( void* image, uint32_t width, uint32_t height, imageFormat format, uint32_t overlay=OVERLAY_DEFAULT );
/**
* Overlay the results on the image.
*/
template<typename T> bool Overlay( T* input, T* output, uint32_t width, uint32_t height, const std::vector<ObjectPose>& poses, uint32_t overlay=OVERLAY_DEFAULT ) { return Overlay((void*)input, (void*)output, width, height, imageFormatFromType<T>(), overlay); }
/**
* Overlay the results on the image.
*/
bool Overlay( void* input, void* output, uint32_t width, uint32_t height, imageFormat format, const std::vector<ObjectPose>& poses, uint32_t overlay=OVERLAY_DEFAULT );
/**
* Retrieve the minimum confidence threshold.
*/
inline float GetThreshold() const { return mThreshold; }
/**
* Set the minimum confidence threshold.
*/
inline void SetThreshold( float threshold ) { mThreshold = threshold; }
/**
* Get the category of objects that are detected (e.g. 'person', 'hand')
*/
inline const char* GetCategory() const { return mTopology.category.c_str(); }
/**
* Get the number of keypoints in the topology.
*/
inline uint32_t GetNumKeypoints() const { return mTopology.keypoints.size(); }
/**
* Get the name of a keypoint in the topology by it's ID.
*/
inline const char* GetKeypointName( uint32_t index ) const { return mTopology.keypoints[index].c_str(); }
/**
* Find the ID of a keypoint by name, or return -1 if not found.
*/
inline int FindKeypointID( const char* name ) const;
/**
* Get the overlay color of a keypoint.
*/
inline float4 GetKeypointColor( uint32_t index ) const { return mKeypointColors[index]; }
/**
* Set the overlay color for a keypoint.
*/
inline void SetKeypointColor( uint32_t index, const float4& color ) { mKeypointColors[index] = color; }
/**
* Set the alpha channel for a keypoint color (between 0-255).
*/
inline void SetKeypointAlpha( uint32_t index, float alpha ) { mKeypointColors[index].w = alpha; }
/**
* Set the alpha channel for all keypoints colors used during overlay.
*/
inline void SetKeypointAlpha( float alpha );
/**
* Get the scale used to calculate the radius of keypoints relative to input image dimensions.
*/
inline float GetKeypointScale() const { return mKeypointScale; }
/**
* Set the scale used to calculate the radius of keypoint circles.
* This scale will be multiplied by the largest image dimension.
*/
inline void SetKeypointScale( float scale ) { mKeypointScale = scale; }
/**
* Get the scale used to calculate the width of link lines relative to input image dimensions.
*/
inline float GetLinkScale() const { return mLinkScale; }
/**
* Set the scale used to calculate the width of link lines.
* This scale will be multiplied by the largest image dimension.
*/
inline void SetLinkScale( float scale ) { mLinkScale = scale; }
protected:
static const int CMAP_WINDOW_SIZE=5;
static const int PAF_INTEGRAL_SAMPLES=7;
static const int MAX_LINKS=100;
static const int MAX_OBJECTS=100;
struct Topology
{
std::string category;
std::vector<std::string> keypoints;
int links[MAX_LINKS * 4];
int numLinks;
};
// constructor
poseNet();
bool init( const char* model_path, const char* topology, const char* colors, float threshold,
const char* input, const char* cmap, const char* paf, uint32_t maxBatchSize,
precisionType precision, deviceType device, bool allowGPUFallback );
bool postProcess(std::vector<ObjectPose>& poses, uint32_t width, uint32_t height);
bool loadTopology( const char* json_path, Topology* topology );
bool loadKeypointColors( const char* filename );
Topology mTopology;
float mThreshold;
float mLinkScale;
float mKeypointScale;
float4* mKeypointColors;
// post-processing buffers
int* mPeaks;
int* mPeakCounts;
int* mConnections;
int* mObjects;
int mNumObjects;
float* mRefinedPeaks;
float* mScoreGraph;
void* mAssignmentWorkspace;
void* mConnectionWorkspace;
};
// FindKeypointID
inline int poseNet::FindKeypointID( const char* name ) const
{
if( !name )
return -1;
const uint32_t numKeypoints = GetNumKeypoints();
for( uint32_t n=0; n < numKeypoints; n++ )
{
if( strcasecmp(GetKeypointName(n), name) == 0 )
return n;
}
return -1;
}
// FindKeypoint
inline int poseNet::ObjectPose::FindKeypoint( uint32_t id ) const
{
const uint32_t numKeypoints = Keypoints.size();
for( uint32_t n=0; n < numKeypoints; n++ )
{
if( id == Keypoints[n].ID )
return n;
}
return -1;
}
// FindLink
inline int poseNet::ObjectPose::FindLink( uint32_t a, uint32_t b ) const
{
const uint32_t numLinks = Links.size();
for( uint32_t n=0; n < numLinks; n++ )
{
if( a == Keypoints[Links[n][0]].ID && b == Keypoints[Links[n][1]].ID )
return n;
}
return -1;
}
// SetKeypointAlpha
inline void poseNet::SetKeypointAlpha( float alpha )
{
const uint32_t numKeypoints = GetNumKeypoints();
for( uint32_t n=0; n < numKeypoints; n++ )
mKeypointColors[n].w = alpha;
}
#endif