-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathAscension.dpr
711 lines (649 loc) · 25.1 KB
/
Ascension.dpr
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
{
Copyright (c) Peter Karpov 2010 - 2019.
Usage of the works is permitted provided that this instrument is retained with
the works, so that any entity that uses the works is notified of this instrument.
DISCLAIMER: THE WORKS ARE WITHOUT WARRANTY.
}
{$IFDEF FPC} {$MODE DELPHI} {$ENDIF} {$APPTYPE CONSOLE} {$MINENUMSIZE 4}
program Ascension; //////////////////////////////////////////////////////////////////
{
>> Version: 2.3
>> Description
Ascension, a general-purpose metaheuristic optimization framework.
>> Author
Peter Karpov
Email : [email protected]
Homepage : inversed.ru
GitHub : inversed-ru
Twitter : @inversed_ru
>> ToDo
! Make sure that crossover is always called in a symmetric way
! Config: there should be an option to specify "Auto" instead of a numeric value
- Bring back more algorithms from 1.8 after testing
? Abstract constructive crossover (see 3D Queens, Heilbronn, No 3 in line),
GRASP-like?
- Merge all Run** procedures, pre-initialize all load tables
- Search space cartography via MDS
- PDMs:
- Sudoku
- S-expressions
- Corewar program generation and optimization
- register language
- stack language
- Time delay embedding
- Functional networks
- Proximity maps
- Graph layout
- Image compression with PDE point selection
- Special function approximation
- Covering codes
? Reorganize the units into folders by type (PDMs, heuristics, core, libs)
? Change config naming convention to Ada_Style or shorten property names
? Rename Distance to SolDistance to avoid confusion with Vectors unit
- Something like an iterator for accessing the tabu list (may simplify the code)
- Useful measures like fitness distance correlation, crossover locality
(correlation between the parent and the child's scores)
- User-defined callbacks for visualization
>> Changelog
2.3 : 2019.12.01 + Multirun statistics collection
+ Lots of new GA options
2.2 : 2019.08.25 + Cooperative tabu search
2.1 : 2019.05.23 + 5 PDMs:
+ 3D N queens
+ Chess coverings
+ Peacable queens
+ Maximum density still life
+ Maximum density squarefree arrangements
2.0 : 2018.09.19 - Most experimental algorithms and features
~ Config format for enumerated parameters
1.6 : 2013.01.29 + Too much to document
1.5 : 2012.02.05 + More metaheuristics
1.4 : 2011.09.26 ~ Moved PDM interface section into an include file
+ Lots of new experimental metaheuristics
1.3 : 2011.06.08 + TSolutionList type as a basis for implementation of
population-based algorithms
1.2 : 2011.05.09 + Local Search
1.1 : 2011.04.04 ~ Changed to console application, reading all parameters from
a config file
+ 'Common' unit reduces copypasta across problems and
metaheuristics
+ New metaheuristics:
+ Estimation of Distribution
+ Stochastic Partitioning
+ Nested Partitioning
+ Benchmarking
0.0 : 2010.11.14 + Initial version
+ Metaheuristics: GA, SA, TS, GLS
}
/////////////////////////////////////////////////////////////////////////////////////
{$R 'icon.res'}
uses
InvSys,
StringLists,
StringUtils,
Arrays,
Statistics,
RandVars,
Formatting,
IniConfigs,
Math,
Common,
Messages,
Problem,
GeneticAlg,
LocalSearchAlg,
TabuSearchAlg,
SimAnnealAlg,
Acceptance;
type
ProcRun = procedure (
var Best : TSolution;
var Stats : TRunStats;
var MutirunStats : TMultirunStats;
const Config : TIniConfig;
Algorithm : TMetaheuristic);
const
PressToExit = 'Press ENTER to exit';
PressToContinue = 'Press ENTER to continue';
ErrorInvalidEnumSize = 'invalid enum size';
{-----------------------<< UI >>----------------------------------------------------}
// Function for displaying messages during the optimization
procedure ShowMessage(
const S : AnsiString);
begin
WriteLn(S);
end;
{-----------------------<< Parameter checking functions >>--------------------------}
const
ErrorRange = 'valid range: [{}, {}]';
InfinityInt = High(LongInt);
PlusInf = '+inf';
MinusInf = '-inf';
// Verify that X lies in the [MinValue, MaxValue] interval,
// return an error message if this is not the case
function CheckInt(
X,
MinValue : LongInt;
MaxValue : LongInt = InfinityInt
) : AnsiString;
function FormatInt(
X : LongInt
) : AnsiString;
begin
if X = -InfinityInt then
Result := MinusInf
else if X = InfinityInt then
Result := PlusInf
else
Result := Format('{}', [X]);
end;
begin
if (X >= MinValue) and (X <= MaxValue) then
Result := ''
else
Result := Format(ErrorRange, [FormatInt(MinValue), FormatInt(MaxValue)]);
end;
// Verify that X lies in the [MinValue, MaxValue] interval,
// return an error message if this is not the case
function CheckReal(
X,
MinValue : Real;
MaxValue : Real = Infinity
) : AnsiString;
function FormatReal(
X : Real
) : AnsiString;
begin
if X = NegInfinity then
Result := MinusInf
else if X = Infinity then
Result := PlusInf
else
Result := Format('{:2}', [X]);
end;
begin
if (X >= MinValue) and (X <= MaxValue) then
Result := ''
else
Result := Format(ErrorRange, [FormatReal(MinValue), FormatReal(MaxValue)]);
end;
// Verify that a number is greater than one
function IntMany(
VarInt : LongInt
) : AnsiString;
begin
Result := CheckInt(VarInt, {MinValue:} 2);
end;
// Verify that a number is positive
function IntPos(
VarInt : LongInt
) : AnsiString;
begin
Result := CheckInt(VarInt, {MinValue:} 1);
end;
// Verify that a number is nonnegative
function IntNonNeg(
VarInt : LongInt
) : AnsiString;
begin
Result := CheckInt(VarInt, {MinValue:} 0);
end;
// Verify that a number is a power of 2
function Int2P(
VarInt : LongInt
) : AnsiString;
begin
if VarInt = IntPower(2, Round(Log2(VarInt))) then
Result := ''
else
Result := 'Power of 2 required';
end;
// Verify that a number lies in the [0 .. 1] interval
function RealUnit(
VarReal : Real
) : AnsiString;
begin
Result := CheckReal(VarReal, {MinValue:} 0, {MaxValue:} 1);
end;
// Verify that a number is nonnegative
function RealNonNeg(
VarReal : Real
) : AnsiString;
begin
Result := CheckReal(VarReal, {MinValue:} 0);
end;
// Get the Index of S in the list of space separated EnumNames
// or return Fail if S is not found
function GetEnumIndex(
var Index : Integer;
const S,
EnumNames : AnsiString
) : Boolean;
var
NameList : TStringList;
Found : Integer;
begin
Parse(NameList, EnumNames, {Delim:} ' ');
Result := Find(Index, NameList, S);
end;
// Get the enumerated type parameter at ptrVar from its Name and the list of
// possible EnumNames, add a message to Errors if it is not found
procedure GetEnum(
ptrVar : Pointer;
var Errors : TStringList;
const Name,
EnumNames : AnsiString);
var
Index : Integer;
const
ErrorBadEnum : AnsiString
= 'Invalid enumerated parameter: {}, valid values are: {}';
begin
if GetEnumIndex(Index, Name, EnumNames) = Success then
PLongWord(ptrVar)^ := Index else
AddToStringList(Errors, Format(ErrorBadEnum, [Name, EnumNames]));
end;
{-----------------------<< Parameter Tweaking >>------------------------------------}
// Perform a test GA run with Params, update ArmStats with the obtained score or
// NFE depending on stopping criterion
procedure TestGARun(
var ArmStats : TRunningStats;
var BestSoFar : TSolution;
const Params : TGAParameters);
var
Best : TSolution;
RunStats : TRunStats;
MultirunStats : TMultirunStats;
X : Real;
const
PathBest = 'Runs_Best';
begin
InitMultirunStats(MultirunStats, {NVars:} 0);
GeneticAlgorithm(Best, RunStats, MultirunStats, Params, NoGAStatus);
if CompareScores(Best, BestSoFar) = scoreBetter then
begin
AssignSolution(BestSoFar, Best);
TrySaveSolution(PathBest, BestSoFar, ShowMessage);
end;
if Params.Stopping = scScore then
X := RunStats.NFEFull else
X := Best.Score;
UpdateRunningStats(ArmStats, X);
end;
// Find the optimal GA population size via Thompson sampling,
// save statistics in the process
procedure TweakPopSize(
var Params : TGAParameters);
var
ArmStats : array of TRunningStats;
X : TRealArray;
i, NRuns : Integer;
BestSoFar : TSolution;
FileArmStats : Text;
const
NArms = 22;
Values : array [0 .. NArms - 1] of Integer
= (4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 225,
289, 361, 441, 576, 729, 961, 1225, 1600, 2116);//, 2809); //, 3721, 4900, 6400);//, 8464);
PathArmStats = 'ArmStats.txt';
MinSamples = 8;
begin
// Initialize arm statistics
WriteLn('Arm Initialization:');
SetLength(ArmStats, NArms);
NewSolution(BestSoFar);
for i := 0 to NArms - 1 do
begin
Write(1 + i, ' ');
InitRunningStats(ArmStats[i]);
Params.PopSize := Values[i];
repeat
TestGARun(ArmStats[i], BestSoFar, Params);
until (ArmStats[i].N >= MinSamples) and (StandDev(ArmStats[i]) > 0);
end;
WriteLn('Done');
// Thompson sampling
SetLength(X, NArms);
repeat
// Pick an arm
for i := 0 to NArms - 1 do
X[i] := ArmStats[i].M + RandGauss * StandError(ArmStats[i]);
if (Params.Stopping = scScore) or Minimization then
i := RandMinIndex(X) else
i := RandMaxIndex(X);
// Run the test
Params.PopSize := Values[i];
TestGARun(ArmStats[i], BestSoFar, Params);
WriteLn(Format('{>4}{>6}{>12~4e1}',
[Params.PopSize, ArmStats[i].N, ArmStats[i].M]));
// Save arm statistics
OpenWrite(FileArmStats, PathArmStats);
for i := 0 to NArms - 1 do
WriteLn(FileArmStats,
Values[i] , Tab,
ArmStats[i].N , Tab,
ArmStats[i].M , Tab,
StandDev (ArmStats[i]) , Tab,
StandError(ArmStats[i]) );
Close(FileArmStats);
until False;
end;
{-----------------------<< Runing metaheuristics >>---------------------------------}
// Display the Errors and await user response
procedure DisplayErrors(
const Errors : TStringList);
begin
DisplayStringList(Errors);
WriteLn(PressToExit);
ReadLn;
end;
// Run the genetic algorithm with parameters specified in Config, return the Best
// solution and run statistics Stats
procedure RunGA(
var Best : TSolution;
var Stats : TRunStats;
var MutirunStats : TMultirunStats;
const Config : TIniConfig;
Algorithm : TMetaheuristic);
var
Params : TGAParameters;
Status : TGAStatus;
LT : TLoadTable;
Errors : TStringList;
Sec,
SSelection,
SReplacement,
SAcceptance,
SStopping : AnsiString;
Tweak : Boolean;
begin
Sec := ShortNames[mhGA] + '.';
Status.ShowMessage := ShowMessage;
with Params, Status do
begin
Assert(SizeOf(Replacement) = 4, ErrorInvalidEnumSize);
Assert(SizeOf(Stopping) = 4, ErrorInvalidEnumSize);
InitLoadTable(LT);
AddLoadParam(LT, PopSize, Sec + 'PopulationSize', IntMany );
AddLoadParam(LT, SSelection, Sec + 'Selection', nil );
AddLoadParam(LT, SelectP, Sec + 'SelectionP', nil );
AddLoadParam(LT, SReplacement, Sec + 'Replacement', nil );
AddLoadParam(LT, ReplaceP, Sec + 'ReplacementP', RealNonNeg );
AddLoadParam(LT, SAcceptance, Sec + 'Acceptance', nil );
AddLoadParam(LT, SStopping, Sec + 'StopCriterion', nil );
AddLoadParam(LT, MaxGens, Sec + 'MaxGens', IntNonNeg );
AddLoadParam(LT, MaxNFE, Sec + 'MaxNFE', IntNonNeg );
AddLoadParam(LT, GenStatus, Sec + 'StatusGens', IntNonNeg );
AddLoadParam(LT, GenSave, Sec + 'SaveGens', IntNonNeg );
AddLoadParam(LT, Tweak, Sec + 'TweakPopSize' );
AddLoadParam(LT, ScoreToReach, 'ScoreToReach', nil );
LoadFromConfig(LT, Config, Errors);
GetEnum(@Selection, Errors, SSelection,
'RankProp FitUniform NearRank ' +
'Dist DistToBest ' +
'Ring LeakyRing LeakyRingTD Torus Segment ' +
'SegmentTD Crescent VarDegreeTD Halo DirHalo ' +
'ThreadedRings InterconRings ThreadedIsles BridgedIsles ' +
'ChainedIsles InterconIsles RandNearConRings RandFarConRings ' +
'RandNearConIsles RandFarConIsles DisconIslesTD');
GetEnum(@Replacement, Errors, SReplacement,
'Worst WorstParent RandParent InvRank InvRankLn InvRankTD ' +
'SimParent CenParent ' +
'SimWorseParent CenWorseParent ' +
'NoveltySim NoveltyCen ' +
'CompoundSimSD CompoundCenSD ' +
'CompoundSimRD CompoundCenRD ' +
'CompoundSimTD CompoundCenTD ' +
'CompSoftSimSD CompSoftCenSD ' +
'CompSoftSimRD CompSoftCenRD ' +
'CompSoftSimTD CompSoftCenTD ' +
'InfluxRare InfluxRD InfluxSD InfluxTD ' +
'Digraph');
GetEnum(@Acceptance, Errors, SAcceptance,
'Elitist Unconditional ' +
'Threshold ThresholdTD ThresholdSD ' +
'DistToBestTD DistToBestSD DistToBestRD ' +
'DistToParentTD DistToParentSD DistToParentRD');
GetEnum(@Stopping, Errors, SStopping,
'MaxGens MaxNFE Score');
if Errors.N = 0 then
if Tweak then
TweakPopSize(Params) else
GeneticAlgorithm(Best, Stats, MutirunStats, Params, Status)
else
DisplayErrors(Errors);
end;
end;
// Run the local search with parameters specified in Config, return the Best
// solution and run statistics Stats
procedure RunLS(
var Best : TSolution;
var Stats : TRunStats;
var MutirunStats : TMultirunStats;
const Config : TIniConfig;
Algorithm : TMetaheuristic);
var
Params : TLSParameters;
Status : TLSStatus;
LT : TLoadTable;
Errors : TStringList;
Sec, SMode : AnsiString;
begin
Sec := ShortNames[mhLS] + '.';
Status.ShowMessage := ShowMessage;
Status.SaveBest := True;
with Status do
begin
Assert(SizeOf(Params) = 4, ErrorInvalidEnumSize);
InitLoadTable(LT);
AddLoadParam(LT, SMode, Sec + 'Mode' , nil);
AddLoadParam(LT, IterStatus, Sec + 'StatusIters', IntNonNeg);
LoadFromConfig(LT, Config, Errors);
GetEnum(@Params, Errors, SMode, 'First Best Chain');
if Errors.N = 0 then
LocalSearch(Best, Stats, MutirunStats, Params, Status, {RandomInit:} True)
else
DisplayErrors(Errors);
end;
end;
// Run the simulated annealing with parameters specified in Config, return the Best
// solution and run statistics Stats
procedure RunSA(
var Best : TSolution;
var Stats : TRunStats;
var MutirunStats : TMultirunStats;
const Config : TIniConfig;
Algorithm : TMetaheuristic);
var
Params : TSAParameters;
Status : TSAStatus;
LT : TLoadTable;
Errors : TStringList;
Sec,
ST0Mode,
SAcceptanceF,
SSchedule : AnsiString;
RealMaxIters : Real;
begin
Sec := ShortNames[mhSA] + '.';
Status.ShowMessage := ShowMessage;
Status.SaveBest := True;
with Params, Status do
begin
Assert(SizeOf(Acceptance.Style) = 4, ErrorInvalidEnumSize);
Assert(SizeOf(Schedule.Type_ ) = 4, ErrorInvalidEnumSize);
Assert(SizeOf(T0Mode ) = 4, ErrorInvalidEnumSize);
InitLoadTable(LT);
AddLoadParam(LT, T0, Sec + 'T0', RealNonNeg );
AddLoadParam(LT, Tfin, Sec + 'Tfin', RealNonNeg );
AddLoadParam(LT, dEmin, Sec + 'dEmin', RealNonNeg );
AddLoadParam(LT, dEmax, Sec + 'dEmax', RealNonNeg );
AddLoadParam(LT, ST0Mode, Sec + 'T0Mode', nil );
AddLoadParam(LT, TfinEBased, Sec + 'TfinEBased' );
AddLoadParam(LT, NReheat, Sec + 'NReheat', IntNonNeg );
AddLoadParam(LT, FastReheat, Sec + 'FastReheat' );
AddLoadParam(LT, Smoothing, Sec + 'Smoothing', RealNonNeg );
AddLoadParam(LT, SAcceptanceF, Sec + 'Acceptance', nil );
AddLoadParam(LT, Acceptance.P, Sec + 'AcceptanceP', RealNonNeg );
AddLoadParam(LT, SSchedule, Sec + 'Schedule', nil );
AddLoadParam(LT, Schedule.P, Sec + 'ScheduleP', RealNonNeg );
AddLoadParam(LT, RealMaxIters, Sec + 'Iterations', RealNonNeg );
AddLoadParam(LT, IterStatus, Sec + 'StatusIters', IntNonNeg );
AddLoadParam(LT, ScoreToReach, 'ScoreToReach', nil );
LoadFromConfig(LT, Config, Errors);
GetEnum(@T0Mode, Errors, ST0Mode, 'Manual EBased AutoLow AutoHigh');
GetEnum(@Acceptance.Style, Errors, SAcceptanceF,
'Exp Power Tsallis Threshold Barker');
GetEnum(@Schedule.Type_, Errors, SSchedule, 'Zero Log Power Exp');
if Errors.N = 0 then
begin
MaxIters := Round(RealMaxIters);
SimulatedAnnealing(Best, Stats, MutirunStats, Params, Status);
end
else
DisplayErrors(Errors);
end;
end;
// Run the tabu search with parameters specified in Config, return the Best
// solution and run statistics Stats
procedure RunTS(
var Best : TSolution;
var Stats : TRunStats;
var MutirunStats : TMultirunStats;
const Config : TIniConfig;
Algorithm : TMetaheuristic);
var
Params : TTSParameters;
Status : TTSStatus;
LT : TLoadTable;
Errors : TStringList;
Sec : AnsiString;
begin
Sec := ShortNames[mhTS] + '.';
Status.ShowMessage := ShowMessage;
Status.SaveBest := True;
with Params, Status do
begin
InitLoadTable(LT);
AddLoadParam(LT, MaxIters, Sec + 'Iterations', IntNonNeg );
AddLoadParam(LT, IterStatus, Sec + 'StatusIters', IntNonNeg );
AddLoadParam(LT, PopSize, Sec + 'PopSize', IntPos );
AddLoadParam(LT, ScoreToReach, 'ScoreToReach', nil );
LoadFromConfig(LT, Config, Errors);
if Errors.N = 0 then
case Algorithm of
mhTS: TabuSearch(
Best, Stats, MutirunStats, Params, Status, {RandomInit:} True);
mhCTS: CoopTabuSearch(
Best, MutirunStats, Params, Status, {RandomInit:} True);
else Assert(False);
end
else
DisplayErrors(Errors);
end;
end;
// Run the metaheuristic specified in a config file
procedure Main;
const
PathConfig = 'Config.ini';
PathRuns = 'Runs.txt';
PathBest = 'Runs_Best';
ErrorInvalidAlg = 'Invalid algorithm specified';
ErrorUnknownAlg = 'Unknown metaheuristic';
RunTable : array [TMetaheuristic] of ProcRun
= (RunGA, RunSA, RunLS, RunTS, RunTS);
PathMultirunStats = '_Stats.txt';
var
Config : TIniConfig;
LT : TLoadTable;
Errors : TStringList;
Algorithm : TMetaheuristic;
SAlgorithm : AnsiString;
NRuns, Run : Integer;
Solution, Best : TSolution;
//RunTime,
//TotalTime : TPreciseTime;
// TimeLimit : Real;
//UseTimeLimit : Boolean;
Done : Boolean;
Stats : TRunStats;
MultirunStats : TMultirunStats;
FileRuns : Text;
begin
repeat
// Load the config
LoadConfig(Config, PathConfig, Errors);
if Errors.N <> 0 then
begin
DisplayErrors(Errors);
{<} break;
end;
// Load the algorithm
Assert(SizeOf(Algorithm) = 4, ErrorInvalidEnumSize);
InitLoadTable(LT);
AddLoadParam(LT, SAlgorithm, 'Algorithm', nil );
AddLoadParam(LT, NRuns, 'NRuns', IntPos );
//AddLoadParam(LT, TimeLimit, 'TimeLimit', RealNonNeg );
//AddLoadParam(LT, UseTimeLimit, 'UseTimeLimit' );
LoadFromConfig(LT, Config, Errors);
GetEnum(@Algorithm, Errors, SAlgorithm, 'GA SA LS TS CTS');
if Errors.N <> 0 then
begin
DisplayErrors(Errors);
{<} break;
end;
// Run the metaheuristic
if (TryOpenWrite(fileRuns, PathRuns, ShowMessage) = Success) then
begin
WriteLn(fileRuns,
'Run', Tab,
'Score', Tab,
'NFEfull', Tab,
'NFEpartial', Tab,
'Iters', Tab,
'Time' );
Run := 1;
InitMultirunStats(MultirunStats, {NVars:} 0);
//StartTiming(TotalTime);
repeat
TryShowMessage(
Format(MsgRunStarted, [ShortNames[Algorithm], Run]),
ShowMessage);
Stats := EmptyStats;
//StartTiming(RunTime);
RunTable[Algorithm](Solution, Stats, MultirunStats, Config, Algorithm);
//StopTiming(RunTime);
TryShowMessage(ShortNames[Algorithm] + MsgRunFinished, ShowMessage);
if (Run = 1) or (CompareScores(Solution, Best) = scoreBetter) then
begin
AssignSolution(Best, Solution);
TrySaveSolution(PathBest, Best, ShowMessage);
end;
WriteLn(fileRuns,
Run, Tab,
FormatScore(Solution.Score), Tab,
Stats.NFEfull, Tab,
Stats.NFEpartial, Tab,
Stats.Iters );
//RunTime.dt );
Flush(fileRuns);
if Sqr(Round(Sqrt(Run))) = Run then
SaveStats(ShortNames[Algorithm] + PathMultirunStats, MultirunStats);
Inc(Run);
Done := Run > NRuns;
//StopTiming(TotalTime);
//case UseTimeLimit of
// False: Done := Run > NRuns;
// True: Done := TotalTime.dt > TimeLimit;
// end;
until Done;
if Sqr(Round(Sqrt(NRuns))) <> NRuns then
SaveStats(ShortNames[Algorithm] + PathMultirunStats, MultirunStats);
Close(fileRuns);
end;
until True;
end;
begin
Randomize;
Main;
end.