-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathreward.py
62 lines (52 loc) · 3.48 KB
/
reward.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
from typing import List
import numpy as np
from citylearn.reward_function import RewardFunction
class MultiplicativeReward(RewardFunction):
def __init__(self, electricity_consumption: List[float] = None, **kwargs):
super().__init__(electricity_consumption=electricity_consumption, **kwargs)
def calculate(self) -> List[float]:
carbon_emission = (np.array(self.carbon_emission).clip(min=0)*self.kwargs['carbon_emission_weight'])**self.kwargs['carbon_emission_exponent']
electricity_price = (np.array(self.electricity_price).clip(min=0)*self.kwargs['electricity_price_weight'])**self.kwargs['electricity_price_exponent']
reward = -carbon_emission*electricity_price
return reward
class AdditiveReward(RewardFunction):
def __init__(self, electricity_consumption: List[float] = None, **kwargs):
super().__init__(electricity_consumption=electricity_consumption, **kwargs)
def calculate(self) -> List[float]:
carbon_emission = (np.array(self.carbon_emission).clip(min=0)*self.kwargs['carbon_emission_weight'])**self.kwargs['carbon_emission_exponent']
electricity_price = (np.array(self.electricity_price).clip(min=0)*self.kwargs['electricity_price_weight'])**self.kwargs['electricity_price_exponent']
reward = -(carbon_emission + electricity_price)
return reward
class AdditiveSolarPenaltyReward(RewardFunction):
def __init__(self, electricity_consumption: List[float] = None, **kwargs):
super().__init__(electricity_consumption=electricity_consumption, **kwargs)
def calculate(self) -> List[float]:
carbon_emission = (np.array(self.carbon_emission)*self.kwargs['carbon_emission_weight'])**self.kwargs['carbon_emission_exponent']
electricity_price = (np.array(self.electricity_price)*self.kwargs['electricity_price_weight'])**self.kwargs['electricity_price_exponent']
soc = self.kwargs.get('electrical_storage_soc', np.array([0.0]*self.agent_count))
reward = -(1.0 + np.sign(electricity_price)*soc)*abs(carbon_emission + electricity_price)
return reward
class RampingReward(RewardFunction):
def __init__(self, electricity_consumption: List[float] = None, **kwargs):
super().__init__(electricity_consumption=electricity_consumption, **kwargs)
self.previous_electricity_consumption_sum = 0.0
def calculate(self) -> List[float]:
electricity_consumption_sum = sum(self.electricity_consumption)
reward = (abs(electricity_consumption_sum - self.previous_electricity_consumption_sum))**self.kwargs['electricity_exponent']
self.previous_electricity_consumption_sum = electricity_consumption_sum
reward = np.array([-reward for _ in self.electricity_consumption], dtype=float)
return reward
class PeakToAverageReward(RewardFunction):
def __init__(self, electricity_consumption: List[float] = None, **kwargs):
super().__init__(electricity_consumption=electricity_consumption, **kwargs)
self.previous_electricity_consumption = []
def calculate(self) -> List[float]:
self.previous_electricity_consumption.append(self.electricity_consumption)
self.previous_electricity_consumption = self.previous_electricity_consumption[-24:]
values = np.array(self.previous_electricity_consumption).clip(min=0)
avg = values.mean(axis=0)
peak = values.max(axis=0)
reward = -peak/avg
reward[np.isnan(reward)] = 0
reward = reward**self.kwargs['electricity_exponent']
return reward