From 9b75806d14778eec42c716dc13141ac2843742e6 Mon Sep 17 00:00:00 2001 From: Ch1y0q Date: Sun, 29 Sep 2024 18:08:49 +0800 Subject: [PATCH] Update Windows GPU quickstart regarding demo (#12124) * use Qwen2-1.5B-Instruct in demo * update * add reference link * update * update --- docs/mddocs/Quickstart/install_windows_gpu.md | 69 +++++++++++-------- 1 file changed, 42 insertions(+), 27 deletions(-) diff --git a/docs/mddocs/Quickstart/install_windows_gpu.md b/docs/mddocs/Quickstart/install_windows_gpu.md index 01381540229..94f66f12a5b 100644 --- a/docs/mddocs/Quickstart/install_windows_gpu.md +++ b/docs/mddocs/Quickstart/install_windows_gpu.md @@ -123,21 +123,15 @@ To monitor your GPU's performance and status (e.g. memory consumption, utilizati ## A Quick Example -Now let's play with a real LLM. We'll be using the [Qwen-1.8B-Chat](https://huggingface.co/Qwen/Qwen-1_8B-Chat) model, a 1.8 billion parameter LLM for this demonstration. Follow the steps below to setup and run the model, and observe how it responds to a prompt "What is AI?". +Now let's play with a real LLM. We'll be using the [Qwen2-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2-1.5B-Instruct) model, a 1.8 billion parameter LLM for this demonstration. Follow the steps below to setup and run the model, and observe how it responds to a prompt "What is AI?". - Step 1: Follow [Runtime Configurations Section](#step-1-runtime-configurations) above to prepare your runtime environment. -- Step 2: Install additional package required for Qwen-1.8B-Chat to conduct: - - ```cmd - pip install tiktoken transformers_stream_generator einops - ``` - -- Step 3: Create code file. IPEX-LLM supports loading model from Hugging Face or ModelScope. Please choose according to your requirements. +- Step 2: Create code file. IPEX-LLM supports loading model from Hugging Face or ModelScope. Please choose according to your requirements. - For **loading model from Hugging Face**: - Create a new file named `demo.py` and insert the code snippet below to run [Qwen-1.8B-Chat](https://huggingface.co/Qwen/Qwen-1_8B-Chat) model with IPEX-LLM optimizations. + Create a new file named `demo.py` and insert the code snippet below to run [Qwen2-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2-1.5B-Instruct) model with IPEX-LLM optimizations. ```python # Copy/Paste the contents to a new file demo.py @@ -147,11 +141,11 @@ Now let's play with a real LLM. We'll be using the [Qwen-1.8B-Chat](https://hugg generation_config = GenerationConfig(use_cache=True) print('Now start loading Tokenizer and optimizing Model...') - tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-1_8B-Chat", + tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-1.5B-Instruct", trust_remote_code=True) # Load Model using ipex-llm and load it to GPU - model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-1_8B-Chat", + model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2-1.5B-Instruct", load_in_4bit=True, cpu_embedding=True, trust_remote_code=True) @@ -159,12 +153,22 @@ Now let's play with a real LLM. We'll be using the [Qwen-1.8B-Chat](https://hugg print('Successfully loaded Tokenizer and optimized Model!') # Format the prompt + # you could tune the prompt based on your own model, + # here the prompt tuning refers to https://huggingface.co/Qwen/Qwen2-1.5B-Instruct#quickstart question = "What is AI?" - prompt = "user: {prompt}\n\nassistant:".format(prompt=question) + messages = [ + {"role": "system", "content": "You are a helpful assistant."}, + {"role": "user", "content": question} + ] + text = tokenizer.apply_chat_template( + messages, + tokenize=False, + add_generation_prompt=True + ) # Generate predicted tokens with torch.inference_mode(): - input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu') + input_ids = tokenizer.encode(text, return_tensors="pt").to('xpu') print('--------------------------------------Note-----------------------------------------') print('| For the first time that each model runs on Intel iGPU/Intel Arcâ„¢ A300-Series or |') @@ -185,7 +189,7 @@ Now let's play with a real LLM. We'll be using the [Qwen-1.8B-Chat](https://hugg do_sample=False, max_new_tokens=32, generation_config=generation_config).cpu() - output_str = tokenizer.decode(output[0], skip_special_tokens=True) + output_str = tokenizer.decode(output[0], skip_special_tokens=False) print(output_str) ``` - For **loading model ModelScopee**: @@ -195,10 +199,9 @@ Now let's play with a real LLM. We'll be using the [Qwen-1.8B-Chat](https://hugg pip install modelscope==1.11.0 ``` - Create a new file named `demo.py` and insert the code snippet below to run [Qwen-1.8B-Chat](https://www.modelscope.cn/models/qwen/Qwen-1_8B-Chat/summary) model with IPEX-LLM optimizations. + Create a new file named `demo.py` and insert the code snippet below to run [Qwen2-1.5B-Instruct](https://www.modelscope.cn/models/qwen/Qwen2-1.5B-Instruct/summary) model with IPEX-LLM optimizations. ```python - # Copy/Paste the contents to a new file demo.py import torch from ipex_llm.transformers import AutoModelForCausalLM @@ -207,11 +210,11 @@ Now let's play with a real LLM. We'll be using the [Qwen-1.8B-Chat](https://hugg generation_config = GenerationConfig(use_cache=True) print('Now start loading Tokenizer and optimizing Model...') - tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-1_8B-Chat", + tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-1.5B-Instruct", trust_remote_code=True) # Load Model using ipex-llm and load it to GPU - model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-1_8B-Chat", + model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2-1.5B-Instruct", load_in_4bit=True, cpu_embedding=True, trust_remote_code=True, @@ -220,13 +223,22 @@ Now let's play with a real LLM. We'll be using the [Qwen-1.8B-Chat](https://hugg print('Successfully loaded Tokenizer and optimized Model!') # Format the prompt + # you could tune the prompt based on your own model, + # here the prompt tuning refers to https://huggingface.co/Qwen/Qwen2-1.5B-Instruct#quickstart question = "What is AI?" - prompt = "user: {prompt}\n\nassistant:".format(prompt=question) - + messages = [ + {"role": "system", "content": "You are a helpful assistant."}, + {"role": "user", "content": question} + ] + text = tokenizer.apply_chat_template( + messages, + tokenize=False, + add_generation_prompt=True + ) + # Generate predicted tokens with torch.inference_mode(): - input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu') - + input_ids = tokenizer.encode(text, return_tensors="pt").to('xpu') print('--------------------------------------Note-----------------------------------------') print('| For the first time that each model runs on Intel iGPU/Intel Arcâ„¢ A300-Series or |') print('| Pro A60, it may take several minutes for GPU kernels to compile and initialize. |') @@ -246,7 +258,7 @@ Now let's play with a real LLM. We'll be using the [Qwen-1.8B-Chat](https://hugg do_sample=False, max_new_tokens=32, generation_config=generation_config).cpu() - output_str = tokenizer.decode(output[0], skip_special_tokens=True) + output_str = tokenizer.decode(output[0], skip_special_tokens=False) print(output_str) ``` > **Note**: @@ -257,7 +269,7 @@ Now let's play with a real LLM. We'll be using the [Qwen-1.8B-Chat](https://hugg > When running LLMs on Intel iGPUs with limited memory size, we recommend setting `cpu_embedding=True` in the `from_pretrained` function. > This will allow the memory-intensive embedding layer to utilize the CPU instead of GPU. -- Step 4. Run `demo.py` within the activated Python environment using the following command: +- Step 3. Run `demo.py` within the activated Python environment using the following command: ```cmd python demo.py @@ -267,9 +279,12 @@ Now let's play with a real LLM. We'll be using the [Qwen-1.8B-Chat](https://hugg Example output on a system equipped with an Intel Core Ultra 5 125H CPU and Intel Arc Graphics iGPU: ``` -user: What is AI? - -assistant: AI stands for Artificial Intelligence, which refers to the development of computer systems that can perform tasks that typically require human intelligence, such as visual perception, speech recognition, +<|im_start|>system +You are a helpful assistant.<|im_end|> +<|im_start|>user +What is AI?<|im_end|> +<|im_start|>assistant +Artificial Intelligence (AI) refers to the simulation of human intelligence in machines that are programmed to think and act like humans. It involves the development of algorithms, ``` ## Tips & Troubleshooting