Skip to content

Latest commit

 

History

History
272 lines (257 loc) · 11.5 KB

File metadata and controls

272 lines (257 loc) · 11.5 KB

BERT Large BFloat16 training - Advanced Instructions

This document has advanced instructions for running BERT Large BFloat16 training, which provides more control over the individual parameters that are used. For more information on using /benchmarks/launch_benchmark.py, see the launch benchmark documentation.

Prior to using these instructions, please follow the setup instructions from the model's README and/or the AI Kit documentation to get your environment setup (if running on bare metal) and download the dataset, pretrained model, etc. If you are using AI Kit, please exclude the --docker-image flag from the commands below, since you will be running the the TensorFlow conda environment instead of docker.

Any of the launch_benchmark.py commands below can be run on bare metal by removing the --docker-image arg. Ensure that you have all of the required prerequisites installed in your environment before running without the docker container.

If you are new to docker and are running into issues with the container, see this document for troubleshooting tips.

Once your environment is setup, navigate to the benchmarks directory of the model zoo and set environment variables for the dataset, checkpoint directory, and an output directory where log files will be written.

cd benchmarks

export CHECKPOINT_DIR=<path to the pretrained bert model directory>
export DATASET_DIR=<path to GLUE data for classifier training or to the SQuAD data for SQuAD training>
export OUTPUT_DIR=<directory where checkpoints and log files will be saved>

BERT Large training can be run in three different modes:

  • To run SQuAD training use the following command with the train_option=SQuAD. The CHECKPOINT_DIR should point to the location where you've downloaded the BERT large (whole word masking) pretrained model, and the DATASET_DIR should point to the SQuAD data.

    python launch_benchmark.py \
      --model-name=bert_large \
      --precision=bfloat16 \
      --mode=training \
      --framework=tensorflow \
      --batch-size=24 \
      --volume $CHECKPOINT_DIR:$CHECKPOINT_DIR \
      --volume $DATASET_DIR:$DATASET_DIR \
      --docker-image intel/intel-optimized-tensorflow:latest \
      --output-dir $OUTPUT_DIR \
      -- train_option=SQuAD \
         vocab_file=$CHECKPOINT_DIR/vocab.txt \
         config_file=$CHECKPOINT_DIR/bert_config.json \
         init_checkpoint=$CHECKPOINT_DIR/bert_model.ckpt \
         do_train=True \
         train_file=$DATASET_DIR/train-v1.1.json \
         do_predict=True \
         predict_file=$DATASET_DIR/dev-v1.1.json \
         learning_rate=3e-5 \
         num_train_epochs=2 \
         max_seq_length=384 \
         doc_stride=128 \
         optimized_softmax=True \
         experimental_gelu=False \
         do_lower_case=True
    

    The dev set predictions will be saved to a file called predictions.json in the output directory.

    python ${DATASET_DIR}/evaluate-v1.1.py ${DATASET_DIR}/dev-v1.1.json ${OUTPUT_DIR}/predictions.json
    

    An execution with these parameters produces results in line with below scores:

    Bf16: {"exact_match": 86.77388836329234, "f1": 92.98642358746287}
    FP32: {"exact_match": 86.72658467360453, "f1": 92.98046893150796}
    

    To run distributed training of SQuAD: for better throughput, simply specify --mpi_num_processes=<num_of_sockets> [--mpi_num_processes_per_socket=1]. To set --mpi_num_processes=<num_of_sockets>, please run lscpu on your machine to check the available number of sockets.

    Note:

    • the global batch size is mpi_num_processes * train_batch_size and sometimes learning rate needs to be adjusted for convergence.
    • square root learning rate scaling is used by default.
    • for BERT fine-tuning, state-of-the-art accuracy can be achieved via parallel training without synchronizing gradients between MPI workers.
    • The --mpi_workers_sync_gradients=[True/False] controls whether the MPI workers sync gradients.By default it is set to False meaning the workers are training independently and the best performing training results will be picked in the end.
    • To enable gradients synchronization, set the --mpi_workers_sync_gradients to True in BERT-specific options.
    • The options optimized_softmax=True can be set for better performance.

    Note : Add a space after --, for BERT-specific options.

    python launch_benchmark.py \
      --model-name=bert_large \
      --precision=bfloat16 \
      --mode=training \
      --framework=tensorflow \
      --batch-size=24 \
      --mpi_num_processes=<num_of_sockets> \
      --volume $CHECKPOINT_DIR:$CHECKPOINT_DIR \
      --volume $DATASET_DIR:$DATASET_DIR \
      --output-dir $OUTPUT_DIR \
      --docker-image intel/intel-optimized-tensorflow:latest \
      -- train_option=SQuAD \
         vocab_file=$CHECKPOINT_DIR/vocab.txt \
         config_file=$CHECKPOINT_DIR/bert_config.json \
         init_checkpoint=$CHECKPOINT_DIR/bert_model.ckpt \
         do_train=True \
         train_file=$DATASET_DIR/train-v1.1.json \
         do_predict=True \
         predict_file=$DATASET_DIR/dev-v1.1.json \
         learning_rate=3e-5 \
         num_train_epochs=2 \
         max_seq_length=384 \
         doc_stride=128 \
         optimized_softmax=True \
         experimental_gelu=False \
         do_lower_case=True
    

    The results file will be written to the ${OUTPUT_DIR} directory.

  • To run Classifier training, use the following command with the train-option=Classifier. For classifier training, use the GLUE data in as the DATASET_DIR. The CHECKPOINT_DIR should point to the BERT base uncased 12-layer, 768-hidden pretrained model that you've downloaded. This example code fine-tunes BERT-Base on the Microsoft Research Paraphrase Corpus (MRPC) corpus, which only contains 3,600 examples.

    python launch_benchmark.py \
      --model-name=bert_large \
      --precision=bfloat16 \
      --mode=training \
      --framework=tensorflow \
      --batch-size=32 \
      --volume $CHECKPOINT_DIR:$CHECKPOINT_DIR \
      --volume $DATASET_DIR:$DATASET_DIR \
      --output-dir $OUTPUT_DIR \
      --docker-image intel/intel-optimized-tensorflow:latest \
      -- train-option=Classifier \
         task-name=MRPC \
         do-train=true \
         do-eval=true \
         data-dir=$DATASET_DIR/MRPC \
         vocab-file=$CHECKPOINT_DIR/vocab.txt \
         config-file=$CHECKPOINT_DIR/bert_config.json \
         init-checkpoint=$CHECKPOINT_DIR/bert_model.ckpt \
         max-seq-length=128 \
         learning-rate=2e-5 \
         num-train-epochs=30 \
         optimized_softmax=True \
         experimental_gelu=False \
         do-lower-case=True
    

    The results file will be written to the ${OUTPUT_DIR} directory.

    To run distributed training of Classifier: for better throughput, specify --mpi_num_processes=<num_of_sockets> [--mpi_num_processes_per_socket=1], please run lscpu on your machine to check the available number of sockets. Note that the global batch size is mpi_num_processes * train_batch_size and sometimes learning rate needs to be adjusted for convergence. By default, the script uses square root learning rate scaling.

    python launch_benchmark.py \
      --model-name=bert_large \
      --precision=bfloat16 \
      --mode=training \
      --framework=tensorflow \
      --batch-size=32 \
      --mpi_num_processes=<num_of_sockets> \
      --volume $CHECKPOINT_DIR:$CHECKPOINT_DIR \
      --volume $DATASET_DIR:$DATASET_DIR \
      --output-dir $OUTPUT_DIR \
      --docker-image intel/intel-optimized-tensorflow:latest \
      -- train-option=Classifier \
         task-name=MRPC \
         do-train=true \
         do-eval=true \
         data-dir=$DATASET_DIR/MRPC \
         vocab-file=$CHECKPOINT_DIR/vocab.txt \
         config-file=$CHECKPOINT_DIR/bert_config.json \
         init-checkpoint=$CHECKPOINT_DIR/bert_model.ckpt \
         max-seq-length=128 \
         learning-rate=2e-5 \
         num-train-epochs=30 \
         optimized_softmax=True \
         experimental_gelu=True \
         do-lower-case=True
    

    The results file will be written to the ${OUTPUT_DIR} directory.

  • To run pre-training from scratch, use the following command with train-option=Pretraining. Pre-training has two phases: In the first phase, the data is generated for sequential length 128. And in the second phase, sequential length 512 is used. Please follow instructions in google bert pre-training for data pre-processing and set the DATASET_DIR environment variable to the TF record directory. The CHECKPOINT_DIR should point to the BERT large uncased (whole word masking) directory.

    python launch_benchmark.py \
      --model-name=bert_large \
      --precision=bfloat16 \
      --mode=training \
      --framework=tensorflow \
      --batch-size=24 \
      --socket-id=0 \
      --num-intra-threads=24 \
      --num-inter-threads=1 \
      --volume $CHECKPOINT_DIR:$CHECKPOINT_DIR \
      --volume $DATASET_DIR:$DATASET_DIR \
      --output-dir $OUTPUT_DIR \
      --docker-image intel/intel-optimized-tensorflow:latest \
      -- train-option=Pretraining \
         input-file=$DATASET_DIR/tf_wiki_formatted_slen512.tfrecord \
         do-train=True \
         do-eval=True \
         config-file=$CHECKPOINT_DIR/bert_config.json \
         init-checkpoint=$CHECKPOINT_DIR/bert_model.ckpt \
         max-seq-length=512 \
         max-predictions=76 \
         num-train-steps=20 \
         warmup-steps=10 \
         learning-rate=2e-5 \
         optimized_softmax=True \
         experimental_gelu=False \
         profile=False
    

    To run distributed training of pretraining: for better throughput, simply specify --mpi_num_processes=<num_of_sockets> [--mpi_num_processes_per_socket=1]. Please run lscpu on your machine to check the available number of sockets.

    Note that the global batch size is mpi_num_processes * train_batch_size and sometimes learning rate needs to be adjusted for convergence. By default, the script uses square root learning rate scaling.

    python launch_benchmark.py \
      --model-name=bert_large \
      --precision=bfloat16 \
      --mode=training \
      --framework=tensorflow \
      --batch-size=24 \
      --num-intra-threads=22 \
      --num-inter-threads=1 \
      --mpi_num_processes=4 \
      --volume $CHECKPOINT_DIR:$CHECKPOINT_DIR \
      --volume $DATASET_DIR:$DATASET_DIR \
      --output-dir $OUTPUT_DIR \
      --docker-image intel/intel-optimized-tensorflow:latest \
      -- train-option=Pretraining \
         input-file=$DATASET_DIR/tf_wiki_formatted_slen512.tfrecord \
         do-train=True \
         do-eval=True \
         config-file=$CHECKPOINT_DIR/bert_config.json \
         init-checkpoint=$CHECKPOINT_DIR/bert_model.ckpt \
         max-seq-length=512 \
         max-predictions=76 \
         num-train-steps=20 \
         warmup-steps=10 \
         learning-rate=2e-5 \
         optimized_softmax=True \
         experimental_gelu=False \
         profile=False
    

    Note: for best performance, we will set num-intra-thread as follows:

    • For single instance (mpi_num_processes=1) run: the value is equal to number of logical cores per socket.
    • For multi-instance (mpi_num_processes>1) run: the value is equal to (num_of_logical_cores_per_socket - 2)