forked from max-andr/provably-robust-boosting
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrobust_boosting.py
288 lines (238 loc) · 12.9 KB
/
robust_boosting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import numpy as np
import math
from numba import jit, prange
from utils import minimum, clip
dtype = np.float32 # float32 is much faster than float64 because of exp
parallel = False # and then it also depends on NUMBA_NUM_THREADS
nogil = True
@jit(nopython=True, nogil=nogil)
def fit_plain_stumps_iter(X_proj, y, gamma, b_vals_i, sum_1, sum_m1, max_weight):
ind = X_proj >= b_vals_i
sum_1_1, sum_1_m1 = np.sum(ind * (y == 1) * gamma), np.sum(ind * (y == -1) * gamma)
sum_0_1, sum_0_m1 = sum_1 - sum_1_1, sum_m1 - sum_1_m1
w_l, w_r = coord_descent_exp_loss(sum_1_1, sum_1_m1, sum_0_1, sum_0_m1, max_weight)
fmargin = y * w_l + y * w_r * ind
loss = np.mean(gamma * np.exp(-fmargin))
return loss, w_l, w_r
@jit(nopython=True, nogil=nogil, parallel=parallel) # really matters, especially with independent iterations
def fit_plain_stumps(X_proj, y, gamma, b_vals, max_weight):
n_thresholds = b_vals.shape[0]
losses = np.full(n_thresholds, np.inf, dtype=dtype)
w_l_vals = np.full(n_thresholds, np.inf, dtype=dtype)
w_r_vals = np.full(n_thresholds, np.inf, dtype=dtype)
sum_1, sum_m1 = np.sum((y == 1) * gamma), np.sum((y == -1) * gamma)
for i in prange(n_thresholds):
# due to a numba bug, if we don't use a separate function inside a prange-loop, we experience a memory leak
losses[i], w_l_vals[i], w_r_vals[i] = fit_plain_stumps_iter(
X_proj, y, gamma, b_vals[i], sum_1, sum_m1, max_weight)
return losses, w_l_vals, w_r_vals, b_vals
@jit(nopython=True, nogil=nogil)
def fit_robust_bound_stumps_iter(X_proj, y, gamma, b_vals_i, sum_1, sum_m1, eps, max_weight):
# Certification for the previous ensemble O(n)
split_lbs, split_ubs = X_proj - eps, X_proj + eps
guaranteed_right = split_lbs > b_vals_i
uncertain = (split_lbs <= b_vals_i) * (split_ubs >= b_vals_i)
loss, w_l, w_r = basic_case_two_intervals(y, gamma, guaranteed_right, uncertain, sum_1, sum_m1, max_weight)
return loss, w_l, w_r
@jit(nopython=True, nogil=nogil, parallel=parallel) # parallel=True really matters, especially with independent iterations
def fit_robust_bound_stumps(X_proj, y, gamma, b_vals, eps, max_weight):
n_thresholds = b_vals.shape[0]
losses = np.full(n_thresholds, np.inf, dtype=dtype)
w_l_vals = np.full(n_thresholds, np.inf, dtype=dtype)
w_r_vals = np.full(n_thresholds, np.inf, dtype=dtype)
sum_1, sum_m1 = np.sum((y == 1) * gamma), np.sum((y == -1) * gamma)
for i in prange(n_thresholds):
losses[i], w_l_vals[i], w_r_vals[i] = fit_robust_bound_stumps_iter(
X_proj, y, gamma, b_vals[i], sum_1, sum_m1, eps, max_weight)
return losses, w_l_vals, w_r_vals, b_vals
@jit(nopython=True, nogil=nogil)
def fit_robust_exact_stumps_iter(X_proj, y, gamma, w_rs, bs, b_vals_i, sum_1, sum_m1, eps, max_weight):
# Certification for the previous ensemble O(n)
split_lbs, split_ubs = X_proj - eps, X_proj + eps
guaranteed_right = split_lbs > b_vals_i
uncertain = (split_lbs <= b_vals_i) * (split_ubs >= b_vals_i)
h_l, h_r = calc_h(X_proj, y, w_rs, bs, b_vals_i, eps)
# there should be quite many useless coordinates which do not have any stumps in the ensemble
# thus h_l=h_r=0 => suffices to check just 2 regions without applying bisection
if np.sum(h_l) == 0.0 and np.sum(h_r) == 0.0:
loss, w_l, w_r = basic_case_two_intervals(y, gamma, guaranteed_right, uncertain, sum_1, sum_m1, max_weight)
else: # general case; happens only when `coord` was already splitted in the previous iterations
loss, w_l, w_r = bisect_coord_descent(y, gamma, h_l, h_r, guaranteed_right, uncertain, max_weight)
return loss, w_l, w_r
@jit(nopython=True, nogil=nogil, parallel=parallel) # parallel=True really matters, especially with independent iterations
def fit_robust_exact_stumps(X_proj, y, gamma, b_vals, eps, w_rs, bs, max_weight):
n_thresholds = b_vals.shape[0]
losses = np.full(n_thresholds, np.inf, dtype=dtype)
w_l_vals = np.full(n_thresholds, np.inf, dtype=dtype)
w_r_vals = np.full(n_thresholds, np.inf, dtype=dtype)
sum_1, sum_m1 = np.sum((y == 1) * gamma), np.sum((y == -1) * gamma)
for i in prange(n_thresholds):
losses[i], w_l_vals[i], w_r_vals[i] = fit_robust_exact_stumps_iter(
X_proj, y, gamma, w_rs, bs, b_vals[i], sum_1, sum_m1, eps, max_weight)
return losses, w_l_vals, w_r_vals, b_vals
@jit(nopython=True, nogil=nogil) # almost 2 times speed-up by njit for this loop!
def coord_descent_exp_loss(sum_1_1, sum_1_m1, sum_0_1, sum_0_m1, max_weight):
m = 1e-10
# if sum_0_1 + sum_0_m1 == 0 or sum_1_1 + sum_1_m1 == 0:
# return np.inf, np.inf
# w_l = (sum_0_1 - sum_0_m1) / (sum_0_1 + sum_0_m1)
# w_r = (sum_1_1 - sum_1_m1) / (sum_1_1 + sum_1_m1) - w_l
# 1e-4 up to 20-50 iters; 1e-6 up to 100-200 iters which leads to a significant slowdown in practice
eps_precision = 1e-4
# We have to properly handle the cases when the optimal leaf value is +-inf.
if sum_1_m1 < m and sum_0_1 < m:
w_l, w_r = -max_weight, 2 * max_weight
elif sum_1_1 < m and sum_0_m1 < m:
w_l, w_r = max_weight, -2 * max_weight
elif sum_1_m1 < m:
w_r = max_weight
w_l = 0.5 * math.log((math.exp(-w_r) * sum_1_1 + sum_0_1) / (math.exp(w_r) * sum_1_m1 + sum_0_m1))
elif sum_1_1 < m:
w_r = -max_weight
w_l = 0.5 * math.log((math.exp(-w_r) * sum_1_1 + sum_0_1) / (math.exp(w_r) * sum_1_m1 + sum_0_m1))
elif sum_0_1 < m:
w_l = -max_weight
w_r = 0.5 * math.log(sum_1_1 / sum_1_m1) - w_l
elif sum_0_m1 < m:
w_l = max_weight
w_r = 0.5 * math.log(sum_1_1 / sum_1_m1) - w_l
else: # main case
w_r = 0.0
w_l = 0.0
w_r_prev, w_l_prev = np.inf, np.inf
i = 0
# Note: ideally one has to calculate the loss, but O(n) factor would slow down everything here
while (np.abs(w_r - w_r_prev) > eps_precision) or (np.abs(w_l - w_l_prev) > eps_precision):
i += 1
w_r_prev, w_l_prev = w_r, w_l
w_r = 0.5 * math.log(sum_1_1 / sum_1_m1) - w_l
w_l = 0.5 * math.log((math.exp(-w_r) * sum_1_1 + sum_0_1) / (math.exp(w_r) * sum_1_m1 + sum_0_m1))
if i == 50:
break
left_leaf = clip(w_l, -max_weight, max_weight)
right_leaf = clip(left_leaf + w_r, -max_weight, max_weight)
w_l, w_r = left_leaf, right_leaf - left_leaf
return w_l, w_r
@jit(nopython=True, nogil=nogil)
def calc_h(X_proj, y, w_rs, bs, b_curr, eps):
num = X_proj.shape[0]
h_l_base, h_r_base = np.zeros(num), np.zeros(num)
if len(bs) == 0:
return h_l_base, h_r_base
# Has to be calculated inside of the loop since depends on the current b
for i in range(len(w_rs)):
# idea: accumulate all the thresholds that preceed the leftmost point
h_l_base += y * w_rs[i] * (X_proj - eps >= bs[i]) # leftmost point is `X_proj - eps`
h_r_base += y * w_rs[i] * (np.maximum(b_curr, X_proj - eps) >= bs[i]) # leftmost point is max(b_curr, x-eps)
# check all thresholds, and afterwards check if they are in (x-eps, x+eps]
idx = np.argsort(bs)
sorted_thresholds = bs[idx]
sorted_w_r = w_rs[idx]
min_left, min_right = np.zeros(num), np.zeros(num)
cumsum_left, cumsum_right = np.zeros(num), np.zeros(num)
for i_t in range(len(sorted_thresholds)):
# consider the threshold if it belongs to (x-eps, min(b, x+eps)] (x-eps is excluded since already evaluated)
idx_x_left = (X_proj - eps < sorted_thresholds[i_t]) * (sorted_thresholds[i_t] <= b_curr) * (
sorted_thresholds[i_t] <= X_proj + eps)
# consider the threshold if it belongs to (max(b, x-eps), x+eps] (b is excluded since already evaluated)
idx_x_right = (b_curr < sorted_thresholds[i_t]) * (X_proj - eps < sorted_thresholds[i_t]) * (
sorted_thresholds[i_t] <= X_proj + eps)
assert np.sum(idx_x_left * idx_x_right) == 0 # mutually exclusive => cannot be True at the same time
diff_left = y * sorted_w_r[i_t] * idx_x_left
diff_right = y * sorted_w_r[i_t] * idx_x_right
# Note: numba doesn't support cumsum over axis=1 nor min over axis=1
cumsum_left += diff_left
cumsum_right += diff_right
min_left = minimum(cumsum_left, min_left)
min_right = minimum(cumsum_right, min_right)
h_l = h_l_base + min_left
h_r = h_r_base + min_right
# That was the case when b is in [x-eps, x+eps]. If not, then:
h_l = h_l * (b_curr >= X_proj - eps) # zero out if b_curr < X_proj - eps
h_r = h_r * (b_curr <= X_proj + eps) # zero out if b_curr > X_proj + eps
return h_l, h_r
@jit(nopython=True, nogil=nogil)
def bisection(w_l, y, gamma, h_l, h_r, guaranteed_right, uncertain, max_weight):
# bisection to find w_r* for the current w_l
eps_precision = 1e-5 # 1e-5: 21 steps, 1e-4: 18 steps (assuming max_weight=10)
w_r = 0.0
w_r_lower, w_r_upper = -max_weight, max_weight
loss_best = np.inf
i = 0
while i == 0 or np.abs(w_r_upper - w_r_lower) > eps_precision:
w_r = (w_r_lower + w_r_upper) / 2
ind = guaranteed_right + (y * w_r < h_l - h_r) * uncertain
# Calculate the indicator function based on the known h_l - h_r
fmargin = y * w_l + h_l + (h_r - h_l + y * w_r) * ind
losses_per_pt = gamma * np.exp(-fmargin)
loss = np.mean(losses_per_pt) # also O(n)
# derivative wrt w_r for bisection
derivative = np.mean(-losses_per_pt * y * ind)
if loss < loss_best:
w_r_best, loss_best = w_r, loss
if derivative >= 0:
w_r_upper = w_r
else:
w_r_lower = w_r
i += 1
return w_r
@jit(nopython=True, nogil=nogil)
def bisect_coord_descent(y, gamma, h_l, h_r, guaranteed_right, uncertain, max_weight):
eps_precision = 1e-5
w_l_prev, w_r_prev = np.inf, np.inf
w_l, w_r = 0.0, 0.0
i = 0
while np.abs(w_l - w_l_prev) > eps_precision or np.abs(w_r - w_r_prev) > eps_precision:
w_r_prev = w_r
w_r = bisection(w_l, y, gamma, h_l, h_r, guaranteed_right, uncertain, max_weight)
ind = guaranteed_right + (y * w_r < h_l - h_r) * uncertain
gamma_with_h = gamma * np.exp(-(~ind * h_l + ind * h_r)) # only for the coord descent step
sum_1_1, sum_1_m1 = np.sum(ind * (y == 1) * gamma_with_h), np.sum(ind * (y == -1) * gamma_with_h)
sum_0_1, sum_0_m1 = np.sum(~ind * (y == 1) * gamma_with_h), np.sum(~ind * (y == -1) * gamma_with_h)
w_l_prev = w_l
w_l = 0.5 * math.log((math.exp(-w_r) * sum_1_1 + sum_0_1) / (math.exp(w_r) * sum_1_m1 + sum_0_m1))
i += 1
if i == 10:
break
ind = guaranteed_right + (y * w_r < h_l - h_r) * uncertain
fmargin = y * w_l + h_l + (h_r - h_l + y * w_r) * ind
loss = np.mean(gamma * np.exp(-fmargin))
return loss, w_l, w_r
def exp_loss_robust(X_proj, y, gamma, w_l, w_r, w_rs, bs, b_curr, eps, h_flag):
num = X_proj.shape[0]
if h_flag:
h_l, h_r = calc_h(X_proj, y, w_rs, bs, b_curr, eps)
else:
h_l, h_r = np.zeros(num), np.zeros(num)
split_lbs, split_ubs = X_proj - eps, X_proj + eps
guaranteed_right = split_lbs > b_curr
uncertain = (split_lbs <= b_curr) * (split_ubs >= b_curr)
ind = guaranteed_right + (y * w_r < h_l - h_r) * uncertain
fmargin = y * w_l + h_l + (h_r - h_l + y * w_r) * ind
loss = np.mean(gamma * np.exp(-fmargin))
loss = dtype(loss) # important for the proper selection of the final threshold
return loss
@jit(nopython=True, nogil=nogil)
def basic_case_two_intervals(y, gamma, guaranteed_right, uncertain, sum_1, sum_m1, max_weight):
loss_best, w_r_best, w_l_best = np.inf, np.inf, np.inf
for sign_w_r in (-1, 1):
# Calculate the indicator function based on the known `sign_w_r`
ind = guaranteed_right + (y * sign_w_r < 0) * uncertain
# Calculate all partial sums
sum_1_1, sum_1_m1 = np.sum(ind * (y == 1) * gamma), np.sum(ind * (y == -1) * gamma)
sum_0_1, sum_0_m1 = sum_1 - sum_1_1, sum_m1 - sum_1_m1
# Minimizer of w_l, w_r on the current interval
w_l, w_r = coord_descent_exp_loss(sum_1_1, sum_1_m1, sum_0_1, sum_0_m1, max_weight)
# if w_r is on the different side from 0, then sign_w_r*w_r < 0 => w_r:=0
w_r = sign_w_r * max(sign_w_r * w_r, 0)
# If w_r now become 0, we need to readjust w_l
if sum_1_m1 != 0 and sum_0_m1 != 0:
w_l = 0.5 * math.log((math.exp(-w_r) * sum_1_1 + sum_0_1) / (math.exp(w_r) * sum_1_m1 + sum_0_m1))
w_l = clip(w_l, -max_weight, max_weight)
else: # to prevent a division over zero
w_l = max_weight * math.copysign(1, 0.5 * math.log((math.exp(-w_r) * sum_1_1 + sum_0_1)))
preds_adv = w_l + w_r * ind
loss = np.mean(gamma * np.exp(-y * preds_adv)) # also O(n)
if loss < loss_best:
loss_best, w_l_best, w_r_best = loss, w_l, w_r
return loss_best, w_l_best, w_r_best