forked from max-andr/provably-robust-boosting
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclassifiers.py
99 lines (85 loc) · 3.85 KB
/
classifiers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import numpy as np
from tree_ensemble import Tree
class OneVsAllClassifier:
def __init__(self, models):
self.models = models
self.n_clsf = len(models)
def predict(self, X):
preds = np.zeros([self.n_clsf, X.shape[0]])
for i_cls in range(self.n_clsf):
preds[i_cls] = self.models[i_cls].predict(X)
return preds
def predict_class(self, X):
preds = self.predict(X)
if self.n_clsf == 1:
return (0.5*((preds > 0)+1)).astype(int).flatten()
else:
return np.argmax(preds, 0)
def certify_treewise(self, X, y, eps):
preds = np.zeros([self.n_clsf, X.shape[0]])
for i_cls in range(self.n_clsf):
preds[i_cls] = self.models[i_cls].certify_treewise(X, y[i_cls], eps)
return preds
def certify_exact(self, X, y, eps):
preds = np.zeros([self.n_clsf, X.shape[0]])
for i_cls in range(self.n_clsf):
preds[i_cls] = self.models[i_cls].certify_exact(X, y[i_cls], eps)
return preds
def fmargin(self, X, y, fx_vals=None):
if fx_vals is None: # if fx_vals have not been provided
fx_vals = self.predict(X)
if self.n_clsf > 1:
preds_correct_class = (fx_vals * (y == 1)).sum(0, keepdims=True)
diff = preds_correct_class - fx_vals # difference between the correct class and all other classes
diff[y == 1] = np.inf # to exclude zeros coming from f_correct - f_correct
fx_vals = diff.min(0, keepdims=True)
else:
fx_vals = y * fx_vals
return fx_vals[0]
def fmargin_treewise(self, X, y, eps, fx_vals=None):
if fx_vals is None: # if fx_vals have not been provided
fx_vals = self.certify_treewise(X, y, eps)
if self.n_clsf > 1:
cert_correct_class = (fx_vals * (y == 1)).sum(0, keepdims=True)
diff = cert_correct_class + fx_vals # plus because of [min -f] in cert for all classes
fx_vals = np.min(diff, 0, keepdims=True)
return fx_vals[0]
def fmargin_exact(self, X, y, eps):
fx_vals = self.certify_exact(X, y, eps)
if self.n_clsf > 1:
cert_correct_class = (fx_vals * (y == 1)).sum(0, keepdims=True)
diff = cert_correct_class + fx_vals # plus because of [min -f] in cert for all classes
fx_vals = np.min(diff, 0, keepdims=True)
return fx_vals[0]
def save(self, model_path):
if model_path != '':
model_lst = []
for model in self.models:
model_lst.append(model.export_model())
model_arr = np.array(model_lst)
np.save(model_path, model_arr)
def load(self, model_path, iteration=-1):
model_data = np.load(model_path, allow_pickle=True)
for i_clsf in range(self.n_clsf):
self.models[i_clsf].load(model_data[i_clsf], iteration)
if type(model_data[0]) is dict:
n_trees = max(model_data[0].keys()) + 1
else:
n_trees = model_data.shape[1]
true_iteration = iteration + 1 if iteration != -1 else n_trees
print('Ensemble of {}/{} trees restored: {}'.format(true_iteration, n_trees, model_path))
def dump_model(self):
""" Returns the model in JSON format compatible with XGBoost. """
# Works for trees
n_cls = len(self.models)
n_trees = max([len(model.trees) for model in self.models])
list_of_tree_dicts = []
for i_tree in range(n_trees):
for i_cls in range(n_cls):
if i_tree < len(self.models[i_cls].trees):
tree = self.models[i_cls].trees[i_tree]
else:
tree = Tree()
tree_dict, _ = tree.get_json_dict(counter_terminal_nodes=-10)
list_of_tree_dicts.append(tree_dict)
return list_of_tree_dicts