forked from AdroitAnandAI/Topic-Modelling-LDA-NMF-W2V
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Readme.txt
53 lines (16 loc) · 974 Bytes
/
Readme.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
Note:
=====
To execute the jupyter notebook, please download the input files from here:
https://drive.google.com/file/d/1s6f2Rd5P7zW8I42oV54O8dNrriCLYZ0u/view?usp=sharing
Most Relevant Files:
====================
1) Multi-Lingual Category Tree Classification.ipynb (Main File)
LDA-NMF Combination Classifier.ipynb: Source code in Jupyter notebook
2) Result_Submission.csv: Result in the format specified
3) Input files = [Train_data.csv, one.csv, two.csv, three.csv, four.csv, four1.csv, noun.csv, result.csv,result2_today.csv]. Uploa ded as Topic-Modelling_input.zip in google drive (link given below)
4) Presentation: contains architecture, solution pipeline, thoughts, techniques etc
5) Readme.txt: step by step guidance to run the code
Instructions:
=============
Multi-Lingual Category Tree Classification.ipynb is the main file to be executed.
LDA-NMF Combination Classifier.ipynb is the fallback LDA-NMF implementation.