forked from facebookresearch/faiss
-
Notifications
You must be signed in to change notification settings - Fork 0
/
bench_gpu_sift1m.py
92 lines (57 loc) · 1.92 KB
/
bench_gpu_sift1m.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import os
import time
import numpy as np
import pdb
import faiss
from datasets import load_sift1M, evaluate
print("load data")
xb, xq, xt, gt = load_sift1M()
nq, d = xq.shape
# we need only a StandardGpuResources per GPU
res = faiss.StandardGpuResources()
#################################################################
# Exact search experiment
#################################################################
print("============ Exact search")
flat_config = faiss.GpuIndexFlatConfig()
flat_config.device = 0
index = faiss.GpuIndexFlatL2(res, d, flat_config)
print("add vectors to index")
index.add(xb)
print("warmup")
index.search(xq, 123)
print("benchmark")
for lk in range(11):
k = 1 << lk
t, r = evaluate(index, xq, gt, k)
# the recall should be 1 at all times
print("k=%d %.3f ms, R@1 %.4f" % (k, t, r[1]))
#################################################################
# Approximate search experiment
#################################################################
print("============ Approximate search")
index = faiss.index_factory(d, "IVF4096,PQ64")
# faster, uses more memory
# index = faiss.index_factory(d, "IVF16384,Flat")
co = faiss.GpuClonerOptions()
# here we are using a 64-byte PQ, so we must set the lookup tables to
# 16 bit float (this is due to the limited temporary memory).
co.useFloat16 = True
index = faiss.index_cpu_to_gpu(res, 0, index, co)
print("train")
index.train(xt)
print("add vectors to index")
index.add(xb)
print("warmup")
index.search(xq, 123)
print("benchmark")
for lnprobe in range(10):
nprobe = 1 << lnprobe
index.nprobe
index.nprobe = nprobe
t, r = evaluate(index, xq, gt, 100)
print("nprobe=%4d %.3f ms recalls= %.4f %.4f %.4f" % (nprobe, t, r[1], r[10], r[100]))