Skip to content

Latest commit

 

History

History
53 lines (41 loc) · 1.19 KB

README.md

File metadata and controls

53 lines (41 loc) · 1.19 KB

Dockerfiles for deep learning experiments.

All Dockerfiles below include

  • Python
  • Jupyter lab

CPU ver

Using docker-compose.

  • Dockerfile-python
    • Base image is python3.
  • docker-compose.yml
    • Set options for docker-compose up(docker run).
  • start.sh
    • Shell script for docker-compose up.
# Build and run docker container
./start.sh Dockerfile_name
# Enter a docker container
docker exec -it experiment zsh

# If you want to use specific container and image name
NAME=cpu ./start.sh
# If you want to use specific port for jupyter lab (default port 8888)
PORT=9000 ./start.sh

GPU ver

I want to use docker-compose but docker-compose doesn't support gpus option, so I use docker build and docker run.

  • Dockerfile-nvidia
    • Base image is nvidia.
  • Dockerfile-pytorch
    • Base image is pytorch.
  • start_gpu.sh
    • Shell script for docker build and docker run.
# Build and run docker container
./start_gpu.sh Dockerfile_name
# Enter a docker container
docker exec -it experiment-gpu zsh

# If you want to use specific container and image name
NAME=gpu ./start.sh
# If you want to use specific port for jupyter lab (default port 8888)
PORT=9000 ./start.sh