-
Notifications
You must be signed in to change notification settings - Fork 4
/
benchmark.py
80 lines (68 loc) · 2.48 KB
/
benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
# ------------------------------------------------------------------------
# Deformable DETR
# Copyright (c) 2020 SenseTime. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ------------------------------------------------------------------------
"""
Benchmark inference speed of Deformable DETR.
"""
import os
import time
import argparse
import torch
from main import get_args_parser as get_main_args_parser
from models import build_model
from datasets import build_dataset
from util.misc import nested_tensor_from_tensor_list
def get_benckmark_arg_parser():
parser = argparse.ArgumentParser("Benchmark inference speed of Deformable DETR.")
parser.add_argument(
"--num_iters", type=int, default=300, help="total iters to benchmark speed"
)
parser.add_argument(
"--warm_iters",
type=int,
default=5,
help="ignore first several iters that are very slow",
)
parser.add_argument(
"--batch_size", type=int, default=1, help="batch size in inference"
)
parser.add_argument("--resume", type=str, help="load the pre-trained checkpoint")
return parser
@torch.no_grad()
def measure_average_inference_time(model, inputs, num_iters=100, warm_iters=5):
ts = []
for iter_ in range(num_iters):
torch.cuda.synchronize()
t_ = time.perf_counter()
model(inputs)
torch.cuda.synchronize()
t = time.perf_counter() - t_
if iter_ >= warm_iters:
ts.append(t)
print(ts)
return sum(ts) / len(ts)
def benchmark():
args, _ = get_benckmark_arg_parser().parse_known_args()
main_args = get_main_args_parser().parse_args(_)
assert (
args.warm_iters < args.num_iters and args.num_iters > 0 and args.warm_iters >= 0
)
assert args.batch_size > 0
assert args.resume is None or os.path.exists(args.resume)
dataset = build_dataset("val", main_args)
model, _, _ = build_model(main_args)
model.cuda()
model.eval()
if args.resume is not None:
ckpt = torch.load(args.resume, map_location=lambda storage, loc: storage)
model.load_state_dict(ckpt["model"])
inputs = nested_tensor_from_tensor_list(
[dataset.__getitem__(0)[0].cuda() for _ in range(args.batch_size)]
)
t = measure_average_inference_time(model, inputs, args.num_iters, args.warm_iters)
return 1.0 / t * args.batch_size
if __name__ == "__main__":
fps = benchmark()
print(f"Inference Speed: {fps:.1f} FPS")