forked from pressel/pycles
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDamping.pyx
133 lines (112 loc) · 4.95 KB
/
Damping.pyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
#!python
#cython: boundscheck=False
#cython: wraparound=False
#cython: initializedcheck=False
#cython: cdivision=True
from libc.math cimport fmin, fmax, sin
import cython
import netCDF4 as nc
import numpy as np
cimport ParallelMPI as ParallelMPI
cimport PrognosticVariables as PrognosticVariables
cimport Grid as Grid
cimport ReferenceState
cimport DiagnosticVariables
cimport numpy as np
from thermodynamic_functions cimport pd_c, pv_c
from entropies cimport sv_c, sd_c
include 'parameters.pxi'
cdef class Damping:
def __init__(self, namelist, ParallelMPI.ParallelMPI Pa):
if(namelist['damping']['scheme'] == 'None'):
self.scheme = Dummy(namelist, Pa)
Pa.root_print('No Damping!')
elif(namelist['damping']['scheme'] == 'Rayleigh'):
self.scheme = Rayleigh(namelist, Pa)
Pa.root_print('Using Rayleigh Damping')
return
cpdef initialize(self, Grid.Grid Gr, ReferenceState.ReferenceState RS):
self.scheme.initialize(Gr, RS)
return
cpdef update(self, Grid.Grid Gr, ReferenceState.ReferenceState RS, PrognosticVariables.PrognosticVariables PV,
DiagnosticVariables.DiagnosticVariables DV, ParallelMPI.ParallelMPI Pa):
self.scheme.update(Gr, RS, PV, DV, Pa)
return
cdef class Dummy:
def __init__(self, namelist, ParallelMPI.ParallelMPI Pa):
return
cpdef update(self, Grid.Grid Gr, ReferenceState.ReferenceState RS, PrognosticVariables.PrognosticVariables PV,
DiagnosticVariables.DiagnosticVariables DV, ParallelMPI.ParallelMPI Pa):
return
cpdef initialize(self, Grid.Grid Gr, ReferenceState.ReferenceState RS):
return
cdef class Rayleigh:
def __init__(self, namelist, ParallelMPI.ParallelMPI Pa):
try:
self.z_d = namelist['damping']['Rayleigh']['z_d']
except:
Pa.root_print('Rayleigh damping z_d not given in namelist')
Pa.root_print('Killing simulation now!')
Pa.kill()
try:
self.gamma_r = namelist['damping']['Rayleigh']['gamma_r']
except:
Pa.root_print('Rayleigh damping gamm_r not given in namelist')
Pa.root_print('Killing simulation now!')
Pa.kill()
return
cpdef initialize(self, Grid.Grid Gr, ReferenceState.ReferenceState RS):
cdef:
int k
double z_top
self.gamma_zhalf = np.zeros(
(Gr.dims.nlg[2]),
dtype=np.double,
order='c')
self.gamma_z = np.zeros((Gr.dims.nlg[2]), dtype=np.double, order='c')
z_top = Gr.dims.dx[2] * Gr.dims.n[2]
with nogil:
for k in range(Gr.dims.nlg[2]):
if Gr.zl_half[k] >= z_top - self.z_d:
self.gamma_zhalf[
k] = self.gamma_r * sin((pi / 2.0) * (1.0 - (z_top - Gr.zl_half[k]) / self.z_d))**2.0
if Gr.zl[k] >= z_top - self.z_d:
self.gamma_z[
k] = self.gamma_r * sin((pi / 2.0) * (1.0 - (z_top - Gr.zl[k]) / self.z_d))**2.0
return
cpdef update(self, Grid.Grid Gr, ReferenceState.ReferenceState RS, PrognosticVariables.PrognosticVariables PV,
DiagnosticVariables.DiagnosticVariables DV, ParallelMPI.ParallelMPI Pa):
cdef:
Py_ssize_t var_shift
Py_ssize_t imin = Gr.dims.gw
Py_ssize_t jmin = Gr.dims.gw
Py_ssize_t kmin = Gr.dims.gw
Py_ssize_t imax = Gr.dims.nlg[0] - Gr.dims.gw
Py_ssize_t jmax = Gr.dims.nlg[1] - Gr.dims.gw
Py_ssize_t kmax = Gr.dims.nlg[2] - Gr.dims.gw
Py_ssize_t istride = Gr.dims.nlg[1] * Gr.dims.nlg[2]
Py_ssize_t jstride = Gr.dims.nlg[2]
Py_ssize_t i, j, k, ishift, jshift, ijk
double[:] domain_mean
for var_name in PV.name_index:
var_shift = PV.get_varshift(Gr, var_name)
domain_mean = Pa.HorizontalMean(Gr, & PV.values[var_shift])
if var_name == 'w':
with nogil:
for i in xrange(imin, imax):
ishift = i * istride
for j in xrange(jmin, jmax):
jshift = j * jstride
for k in xrange(kmin, kmax):
ijk = ishift + jshift + k
PV.tendencies[var_shift + ijk] -= (PV.values[var_shift + ijk] - domain_mean[k]) * self.gamma_zhalf[k]
else:
with nogil:
for i in xrange(imin, imax):
ishift = i * istride
for j in xrange(jmin, jmax):
jshift = j * jstride
for k in xrange(kmin, kmax):
ijk = ishift + jshift + k
PV.tendencies[var_shift + ijk] -= (PV.values[var_shift + ijk] - domain_mean[k]) * self.gamma_z[k]
return