欢迎大家参与本项目,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!
给定一组不含重复元素的整数数组 nums,返回该数组所有可能的子集(幂集)。
说明:解集不能包含重复的子集。
示例: 输入: nums = [1,2,3] 输出: [ [3], [1], [2], [1,2,3], [1,3], [2,3], [1,2], [] ]
求子集问题和回溯算法:求组合问题!和回溯算法:分割问题!又不一样了。
如果把 子集问题、组合问题、分割问题都抽象为一棵树的话,那么组合问题和分割问题都是收集树的叶子节点,而子集问题是找树的所有节点!
其实子集也是一种组合问题,因为它的集合是无序的,子集{1,2} 和 子集{2,1}是一样的。
那么既然是无序,取过的元素不会重复取,写回溯算法的时候,for就要从startIndex开始,而不是从0开始!
有同学问了,什么时候for可以从0开始呢?
求排列问题的时候,就要从0开始,因为集合是有序的,{1, 2} 和{2, 1}是两个集合,排列问题我们后续的文章就会讲到的。
以示例中nums = [1,2,3]为例把求子集抽象为树型结构,如下:
从图中红线部分,可以看出遍历这个树的时候,把所有节点都记录下来,就是要求的子集集合。
- 递归函数参数
全局变量数组path为子集收集元素,二维数组result存放子集组合。(也可以放到递归函数参数里)
递归函数参数在上面讲到了,需要startIndex。
代码如下:
vector<vector<int>> result;
vector<int> path;
void backtracking(vector<int>& nums, int startIndex) {
- 递归终止条件
从图中可以看出:
剩余集合为空的时候,就是叶子节点。
那么什么时候剩余集合为空呢?
就是startIndex已经大于数组的长度了,就终止了,因为没有元素可取了,代码如下:
if (startIndex >= nums.size()) {
return;
}
其实可以不需要加终止条件,因为startIndex >= nums.size(),本层for循环本来也结束了。
- 单层搜索逻辑
求取子集问题,不需要任何剪枝!因为子集就是要遍历整棵树。
那么单层递归逻辑代码如下:
for (int i = startIndex; i < nums.size(); i++) {
path.push_back(nums[i]); // 子集收集元素
backtracking(nums, i + 1); // 注意从i+1开始,元素不重复取
path.pop_back(); // 回溯
}
根据关于回溯算法,你该了解这些!给出的回溯算法模板:
void backtracking(参数) {
if (终止条件) {
存放结果;
return;
}
for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
处理节点;
backtracking(路径,选择列表); // 递归
回溯,撤销处理结果
}
}
可以写出如下回溯算法C++代码:
class Solution {
private:
vector<vector<int>> result;
vector<int> path;
void backtracking(vector<int>& nums, int startIndex) {
result.push_back(path); // 收集子集,要放在终止添加的上面,否则会漏掉自己
if (startIndex >= nums.size()) { // 终止条件可以不加
return;
}
for (int i = startIndex; i < nums.size(); i++) {
path.push_back(nums[i]);
backtracking(nums, i + 1);
path.pop_back();
}
}
public:
vector<vector<int>> subsets(vector<int>& nums) {
result.clear();
path.clear();
backtracking(nums, 0);
return result;
}
};
在注释中,可以发现可以不写终止条件,因为本来我们就要遍历整颗树。
有的同学可能担心不写终止条件会不会无限递归?
并不会,因为每次递归的下一层就是从i+1开始的。
相信大家经过了
- 组合问题:
- 分割问题:
洗礼之后,发现子集问题还真的有点简单了,其实这就是一道标准的模板题。
但是要清楚子集问题和组合问题、分割问题的的区别,子集是收集树形结构中树的所有节点的结果。
而组合问题、分割问题是收集树形结构中叶子节点的结果。
Java:
class Solution {
List<List<Integer>> result = new ArrayList<>();// 存放符合条件结果的集合
LinkedList<Integer> path = new LinkedList<>();// 用来存放符合条件结果
public List<List<Integer>> subsets(int[] nums) {
if (nums.length == 0){
result.add(new ArrayList<>());
return result;
}
subsetsHelper(nums, 0);
return result;
}
private void subsetsHelper(int[] nums, int startIndex){
result.add(new ArrayList<>(path));//「遍历这个树的时候,把所有节点都记录下来,就是要求的子集集合」。
if (startIndex >= nums.length){ //终止条件可不加
return;
}
for (int i = startIndex; i < nums.length; i++){
path.add(nums[i]);
subsetsHelper(nums, i + 1);
path.removeLast();
}
}
}
Python:
class Solution:
def subsets(self, nums: List[int]) -> List[List[int]]:
res = []
path = []
def backtrack(nums,startIndex):
res.append(path[:]) #收集子集,要放在终止添加的上面,否则会漏掉自己
for i in range(startIndex,len(nums)): #当startIndex已经大于数组的长度了,就终止了,for循环本来也结束了,所以不需要终止条件
path.append(nums[i])
backtrack(nums,i+1) #递归
path.pop() #回溯
backtrack(nums,0)
return res
Go:
var res [][]int
func subset(nums []int) [][]int {
res = make([][]int, 0)
sort.Ints(nums)
Dfs([]int{}, nums, 0)
return res
}
func Dfs(temp, nums []int, start int){
tmp := make([]int, len(temp))
copy(tmp, temp)
res = append(res, tmp)
for i := start; i < len(nums); i++{
//if i>start&&nums[i]==nums[i-1]{
// continue
//}
temp = append(temp, nums[i])
Dfs(temp, nums, i+1)
temp = temp[:len(temp)-1]
}
}
Javascript:
var subsets = function(nums) {
let result = []
let path = []
function backtracking(startIndex) {
result.push(path.slice())
for(let i = startIndex; i < nums.length; i++) {
path.push(nums[i])
backtracking(i + 1)
path.pop()
}
}
backtracking(0)
return result
};