forked from IraKorshunova/folk-rnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsample_rnn.py
executable file
·123 lines (98 loc) · 3.87 KB
/
sample_rnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
from __future__ import print_function
import theano
import lasagne
import os
import sys
import time
import importlib
if sys.version_info < (3,0):
import cPickle as pickle
else:
import pickle
import numpy as np
import theano.tensor as T
from lasagne.layers import *
theano.config.floatX = 'float64'
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('metadata_path')
parser.add_argument('--rng_seed', type=int, default=42)
parser.add_argument('--temperature', type=float, default=1.0)
parser.add_argument('--ntunes', type=int, default=1)
parser.add_argument('--seed')
parser.add_argument('--terminal', action="store_true")
args = parser.parse_args()
metadata_path = args.metadata_path
rng_seed = args.rng_seed
temperature = args.temperature
ntunes = args.ntunes
seed = args.seed
with open(metadata_path) as f:
metadata = pickle.load(f)
config = importlib.import_module('configurations.%s' % metadata['configuration'])
# samples dir
if not os.path.isdir('samples'):
os.makedirs('samples')
target_path = "samples/%s-s%d-%.2f-%s.txt" % (
metadata['experiment_id'], rng_seed, temperature, time.strftime("%Y%m%d-%H%M%S", time.localtime()))
token2idx = metadata['token2idx']
idx2token = dict((v, k) for k, v in token2idx.iteritems())
vocab_size = len(token2idx)
print('Building the model')
x = T.imatrix('x')
l_inp = InputLayer((1, None), input_var=x)
W_emb = np.eye(vocab_size, dtype='float32') if config.one_hot else lasagne.init.Orthogonal()
emb_output_size = vocab_size if config.one_hot else config.embedding_size
l_emb = EmbeddingLayer(l_inp, input_size=vocab_size, output_size=emb_output_size, W=W_emb)
main_layers = []
for _ in xrange(config.num_layers):
if not main_layers:
main_layers.append(LSTMLayer(l_emb, num_units=config.rnn_size,
peepholes=False,
grad_clipping=config.grad_clipping))
else:
main_layers.append(LSTMLayer(main_layers[-1], num_units=config.rnn_size,
peepholes=False,
grad_clipping=config.grad_clipping))
if config.dropout > 0:
main_layers.append(DropoutLayer(main_layers[-1], p=config.dropout))
l_reshp = ReshapeLayer(main_layers[-1], (-1, config.rnn_size))
l_out = DenseLayer(l_reshp, num_units=vocab_size, nonlinearity=lasagne.nonlinearities.identity)
predictions = T.nnet.softmax(lasagne.layers.get_output(l_out, deterministic=True)[-1, :] / temperature)[0]
all_params = lasagne.layers.get_all_params(l_out)
lasagne.layers.set_all_param_values(l_out, metadata['param_values'])
all_layes = lasagne.layers.get_all_layers(l_out)
for layer in all_layes:
print(layer.__class__.__name__)
for p in layer.get_params():
print(p.get_value().shape)
print('number of parameters: ', lasagne.layers.count_params(l_out))
predict = theano.function([x], predictions)
start_idx, end_idx = token2idx['<s>'], token2idx['</s>']
rng = np.random.RandomState(rng_seed)
vocab_idxs = np.arange(vocab_size)
# Converting the seed passed as an argument into a list of idx
seed_sequence = [start_idx]
if seed is not None:
for token in seed.split(' '):
seed_sequence.append(token2idx[token])
for i in xrange(ntunes):
sequence = seed_sequence[:]
while sequence[-1] != end_idx:
next_itoken = rng.choice(vocab_idxs, p=predict(np.array([sequence], dtype='int32')))
sequence.append(next_itoken)
abc_tune = [idx2token[j] for j in sequence[1:-1]]
if not args.terminal:
f = open(target_path, 'a+')
f.write('X:' + repr(i) + '\n')
f.write(abc_tune[0] + '\n')
f.write(abc_tune[1] + '\n')
f.write(' '.join(abc_tune[2:]) + '\n\n')
f.close()
else:
print('X:' + repr(i))
print(abc_tune[0])
print(abc_tune[1])
print(' '.join(abc_tune[2:]) + '\n')
if not args.terminal:
print('Saved to '+target_path)