-
Notifications
You must be signed in to change notification settings - Fork 86
/
titanic_all_features.py
84 lines (72 loc) · 3.14 KB
/
titanic_all_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import random
import pandas
from sklearn.cross_validation import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
from sklearn.preprocessing import LabelEncoder
from sklearn.utils import check_array
import tensorflow as tf
from tensorflow.contrib import layers
from tensorflow.contrib import learn
train = pandas.read_csv('data/titanic_train.csv')
y = train.pop('Survived')
# Drop all unique columns. List all variables for future reference.
categorical_vars = ['Pclass', 'Sex', 'Embarked']
continues_vars = ['Age', 'SibSp', 'Parch', 'Fare']
X = train[categorical_vars + continues_vars].fillna(0)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Pandas input functino.
def pandas_input_fn(x, y=None, batch_size=128, num_epochs=None):
def input_fn():
if y is not None:
x['target'] = y
queue = learn.dataframe.queues.feeding_functions.enqueue_data(
x, 1000, shuffle=num_epochs is None, num_epochs=num_epochs)
if num_epochs is None:
features = queue.dequeue_many(batch_size)
else:
features = queue.dequeue_up_to(batch_size)
features = dict(zip(['index'] + list(x.columns), features))
if y is not None:
target = features.pop('target')
return features, target
return features
return input_fn
# Process categorical variables into ids.
X_train = X_train.copy()
X_test = X_test.copy()
categorical_var_encoders = {}
for var in categorical_vars:
le = LabelEncoder().fit(X_train[var])
X_train[var + '_ids'] = le.transform(X_train[var])
X_test[var + '_ids'] = le.transform(X_test[var])
X_train.pop(var)
X_test.pop(var)
categorical_var_encoders[var] = le
CATEGORICAL_EMBED_SIZE = 10 # Note, you can customize this per variable.
# 3 layer neural network with hyperbolic tangent activation.
def dnn_tanh(features, target):
target = tf.one_hot(target, 2, 1.0, 0.0)
# Organize continues features.
final_features = [tf.expand_dims(tf.cast(features[var], tf.float32), 1) for var in continues_vars]
# Embed categorical variables into distributed representation.
for var in categorical_vars:
feature = learn.ops.categorical_variable(
features[var + '_ids'], len(categorical_var_encoders[var].classes_),
embedding_size=CATEGORICAL_EMBED_SIZE, name=var)
final_features.append(feature)
# Concatenate all features into one vector.
features = tf.concat(1, final_features)
# Deep Neural Network
logits = layers.stack(features, layers.fully_connected, [10, 20, 10],
activation_fn=tf.tanh)
prediction, loss = learn.models.logistic_regression(logits, target)
train_op = layers.optimize_loss(loss,
tf.contrib.framework.get_global_step(), optimizer='SGD', learning_rate=0.05)
return tf.argmax(prediction, dimension=1), loss, train_op
random.seed(42)
classifier = learn.Estimator(model_fn=dnn_tanh)
# Note: not training this alomst at all.
classifier.fit(input_fn=pandas_input_fn(X_train, y_train), steps=100)
preds = list(classifier.predict(input_fn=pandas_input_fn(X_test, num_epochs=1), as_iterable=True))
print(accuracy_score(y_test, preds))