forked from harveyfly/SignLanguageRecognition
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSLR_flask_server.py
150 lines (130 loc) · 5.36 KB
/
SLR_flask_server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import os
import sys
import argparse
from flask import Flask, request, jsonify, json
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
# import 子模块
from utils.logger import *
from utils.parse_config import *
from utils.utils import *
from utils.keyframes import *
# 创建Flask app
app = Flask(__name__)
'''
post 数据格式:
{
"keyframes_num": "36",
"frame_len": "24",
"skeleton_data": [197.0,228.0,179.0,283.0,...]
}
'''
@app.route("/predict", methods=["POST"])
def predict():
result_dict = {"sucess": False}
if request.method == "POST":
# 获取POST数据
rec_data = json.loads(request.get_data())
rec_input_size = int(rec_data["frame_len"])
if rec_input_size != input_size:
result_dict["error_msg"] = "Input data size error!"
else:
rec_skelenton_data = rec_data["skeleton_data"]
skeleton_data_array = np.array(rec_skelenton_data, dtype=np.float32).reshape(-1, rec_input_size)
# 提取关键帧
key_indexes = extract_keyframes_indexes(skeleton_data_array, time_step)
if len(key_indexes) < time_step:
return jsonify(result_dict)
skeleton_data_array = skeleton_data_array[key_indexes]
# 按每帧转换为相对坐标
for i in range(time_step):
skeleton_data_array[i] = abs2rel(skeleton_data_array[i], crop_size)
# 转换为tensor
skeleton_data_tensor = torch.from_numpy(skeleton_data_array).to(device).unsqueeze(0)
# 计算预测结果
with torch.no_grad():
prediction = model(skeleton_data_tensor)
pre_result = torch.max(F.softmax(prediction[:, -1, :], dim=1), 1)
pre_class = pre_result[1].cpu().data.numpy().tolist()[0]
pre_prob = pre_result[0].cpu().data.numpy().tolist()[0]
pre_class_name = class_index2name(class_dict, pre_class, dict_start_index)
if pre_prob > 0.8:
result_dict["prediction"] = pre_class_name
else:
result_dict["prediction"] = "Unknown"
result_dict["sucess"] = True
return jsonify(result_dict)
@app.route("/getSysParameter", methods=["GET"])
def getSysParameter():
if request.method == "GET":
return jsonify({
"sucess": True,
"keyframes_num": time_step,
"frame_len": input_size,
"crop_size": crop_size
})
else:
return jsonify({
"sucess": False,
"error_msg": "Http method error"
})
# 加载模型
def load_checkpoint(filepath, device):
checkpoint = torch.load(filepath, map_location=device)
model = checkpoint['model'] # 提取网络结构
model.load_state_dict(checkpoint['model_state_dict']) # 加载网络权重参数
for parameter in model.parameters():
parameter.requires_grad = False
model.eval()
return model
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--model_config", type=str, default="config/Net.cfg", help="path to model definition file")
parser.add_argument("--model_name", type=str, default="blstm", help="used model name (lstm, blstm)")
parser.add_argument("--server_config", type=str, default="config/SLR_server.cfg", help="path to server config file")
parser.add_argument("--crop_size", type=int, default=256, help="size of each crop image")
opt = parser.parse_args()
print(opt)
# 读取配置文件
server_config = parse_data_config(opt.server_config)
model_config = parse_model_config(opt.model_config)[opt.model_name]
# 图片裁剪大小
crop_size = int(opt.crop_size)
# 记录日志
logger = Logger(server_config["log_path"])
# 读取字典
dict_path = server_config["dictionary_path"]
if not os.path.exists(dict_path):
logger.logger.error("class dict is not exist")
exit()
class_dict = read_dict_table(dict_path)
dict_start_index = int(server_config["dict_start_index"])
# 设置GPU
use_gpu = torch.cuda.is_available()
device = torch.device("cuda:0" if use_gpu else "cpu")
logger.logger.info(str(device))
# 获取gpu名字
logger.logger.info(torch.cuda.get_device_name(0))
# 设置随机种子
torch.manual_seed(int(model_config["SEED"]))
# 处理模型参数
batch_size = int(model_config["BATCH_SIZE"])
cpu_nums = int(model_config["CPU_NUMS"])
time_step = int(model_config["TIME_STEP"])
input_size = int(model_config["INPUT_SIZE"])
output_size = int(model_config["OUTPUT_SIZE"])
# 保存的模型名称
model_save_dir = server_config["model_save_dir"]
model_save_name = opt.model_name + "_output" + str(output_size) + "_input" + str(time_step) + "x" + str(input_size) + ".pkl"
model_save_path = os.path.join(model_save_dir, model_save_name)
# 判断模型文件是否存在
if not os.path.exists(model_save_path):
logger.logger.error("model file is not existed!")
exit()
# 加载模型
model = load_checkpoint(model_save_path, device)
if use_gpu:
model.to(device)
app.run(host='0.0.0.0', port=60504, debug=True)