-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_glue.py
1208 lines (1083 loc) · 43 KB
/
train_glue.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Finetuning a 🤗 Transformers model for sequence classification on GLUE."""
# taken and modified from https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue_no_trainer.py
# on 21-6-2021
import argparse
import logging
import math
import os
import random
import wandb
import torch
import numpy as np
import datasets
from datasets import load_dataset, load_metric
from torch.utils.data.dataloader import DataLoader
from tqdm.auto import tqdm
import transformers
from transformers import (
AdamW,
AutoTokenizer,
DataCollatorWithPadding,
PretrainedConfig,
SchedulerType,
default_data_collator,
get_scheduler,
set_seed,
)
from transformers.utils.versions import require_version
from collections import defaultdict
from utils.module_proxy_wrapper import ModuleProxyWrapper
from accelerate import Accelerator, DistributedDataParallelKwargs, DistributedType
from sampling import (
Sampler,
get_supertransformer_config,
show_random_elements,
show_args,
)
from custom_layers import custom_bert, custom_mobile_bert
import plotly.graph_objects as go
from utils import (
count_parameters,
check_path,
get_current_datetime,
read_json,
calculate_params_from_config,
millify,
)
from torchinfo import summary
from utils.early_stopping import EarlyStopping
logger = logging.getLogger(__name__)
require_version(
"datasets>=1.8.0",
"To fix: pip install -r examples/pytorch/text-classification/requirements.txt",
)
task_to_keys = {
"cola": ("sentence", None),
"mnli": ("premise", "hypothesis"),
"mrpc": ("sentence1", "sentence2"),
"qnli": ("question", "sentence"),
"qqp": ("question1", "question2"),
"rte": ("sentence1", "sentence2"),
"sst2": ("sentence", None),
"stsb": ("sentence1", "sentence2"),
"wnli": ("sentence1", "sentence2"),
"imdb": ("sentence", None),
"snli": ("premise", "hypothesis"),
"scitail": ("premise", "hypothesis"),
"elue_sst2": ("sentence", None),
}
label_list_for_aug_data = {
"cola": {"unacceptable": 0, "acceptable": 1},
"sst-2": {"negative": 0, "positive": 1},
"mrpc": {"not_equivalent": 0, "equivalent": 1},
"qqp": {"not_duplicate": 0, "duplicate": 1},
"mnli": {"entailment": 0, "neutral": 1, "contradiction": 2},
"qnli": {"entailment": 0, "not_entailment": 1},
"rte": {"entailment": 0, "not_entailment": 1},
"wnli": {"not_entailment": 0, "entailment": 1},
"imdb": {"0": 0, "1": 1},
"scitail": {"0": 0, "1": 1},
"snli": {"0": 0, "1": 1, "2": 2},
"elue_sst2": {"0": 0, "1": 1},
}
def parse_args():
parser = argparse.ArgumentParser(
description="Finetune a transformers model on a text classification task"
)
parser.add_argument(
"--task_name",
type=str,
default="mrpc",
help="The name of the glue task to train on.",
choices=list(task_to_keys.keys()),
)
parser.add_argument(
"--elue_dir",
type=str,
default=None,
help="The directory containing elue_datasets",
)
parser.add_argument(
"--train_file",
type=str,
default=None,
help="A csv or a json file containing the training data.",
)
parser.add_argument(
"--validation_file",
type=str,
default=None,
help="A csv or a json file containing the validation data.",
)
parser.add_argument(
"--max_length",
type=int,
default=128,
help=(
"The maximum total input sequence length after tokenization. Sequences longer than this will be truncated,"
" sequences shorter will be padded if `--pad_to_max_lengh` is passed."
),
)
parser.add_argument(
"--pad_to_max_length",
action="store_true",
help="If passed, pad all samples to `max_length`. Otherwise, dynamic padding is used.",
)
parser.add_argument(
"--model_name_or_path",
default="bert-base-cased",
type=str,
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--use_slow_tokenizer",
action="store_true",
help="If passed, will use a slow tokenizer (not backed by the 🤗 Tokenizers library).",
)
parser.add_argument(
"--per_device_train_batch_size",
type=int,
default=32,
help="Batch size (per device) for the training dataloader.",
)
parser.add_argument(
"--per_device_eval_batch_size",
type=int,
default=64,
help="Batch size (per device) for the evaluation dataloader.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=3e-5,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument(
"--weight_decay", type=float, default=0.01, help="Weight decay to use."
)
parser.add_argument(
"--num_train_epochs",
type=int,
default=10,
help="Total number of training epochs to perform.",
)
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--lr_scheduler_type",
type=SchedulerType,
default="linear",
help="The scheduler type to use.",
choices=[
"linear",
"cosine",
"cosine_with_restarts",
"polynomial",
"constant",
"constant_with_warmup",
],
)
parser.add_argument(
"--num_warmup_steps",
type=int,
default=0,
help="Number of steps for the warmup in the lr scheduler.",
)
parser.add_argument(
"--output_dir",
type=str,
default="checkpoints",
help="Where to store the final model.",
)
parser.add_argument(
"--seed", type=int, default=42, help="A seed for reproducible training."
)
# args we add
parser.add_argument(
"--early_stopping_patience",
default=5,
type=int,
help="Patience for early stopping to stop training if val_acc doesnt converge",
)
parser.add_argument(
"--eval_random_subtransformers",
default=1,
type=int,
help="If set to 1, this will evaluate 25 random subtransformers after every training epoch when training a supertransformer",
)
parser.add_argument(
"--train_subtransformers_from_scratch",
default=0,
type=int,
help="""
If set to 1, this will train 25 random subtransformers from scratch.
By default, it is set to False (0) and we train a supertransformer and finetune subtransformers
""",
)
parser.add_argument(
"--fp16", type=int, default=1, help="If set to 1, will use FP16 training."
)
parser.add_argument(
"--mixing",
type=str,
required=True,
help=f"specifies how to mix the tokens in bertlayers",
choices=["attention", "gmlp", "fnet", "mobilebert", "bert-bottleneck"],
)
parser.add_argument(
"--rewire",
type=int,
default=0,
help=f"Whether to rewire model",
)
parser.add_argument(
"--resume_from_checkpoint_dir",
type=str,
default=None,
help=f"directory that contains checkpoints, optimizer, scheduler to resume training",
)
parser.add_argument(
"--tiny_attn",
type=int,
default=0,
help=f"Choose this if you need Tiny Attention Module along-with gMLP dense block",
)
parser.add_argument(
"--num_subtransformers_monitor",
type=int,
default=25,
help=f"Choose the number of subtransformers whose performance you wish to monitor",
)
parser.add_argument(
"--debug",
action="store_true",
help="If passed, use 100 samples of dataset to quickly run and check code.",
)
parser.add_argument(
"--wandb_entity",
type=str,
required=True,
help=f"wandb entity",
)
parser.add_argument(
"--wandb_project",
type=str,
default="Glue-Finetuning",
help=f"wandb project",
)
parser.add_argument(
"--sampling_type",
type=str,
default="random",
help=f"The sampling type for super-transformer",
choices=["none", "naive_params", "biased_params", "random"],
)
parser.add_argument(
"--subtransformer_config_path",
type=str,
default=None,
help=f"The path to a subtransformer configration",
)
parser.add_argument(
"--wandb_suffix",
type=str,
default=None,
help=f"suffix for wandb",
)
parser.add_argument(
"--is_mnli_checkpoint",
type=int,
default=0,
help=f"if model path is a pretrained mnli checkpoint",
)
parser.add_argument(
"--aug_train_file",
type=str,
default=None,
help=f"path to augmented train file",
)
args = parser.parse_args()
# args.model_name_or_path = "bert-base-cased"
# Sanity checks
if (
args.task_name is None
and args.train_file is None
and args.validation_file is None
):
raise ValueError("Need either a dataset name or a training/validation file.")
else:
if args.train_file is not None:
extension = args.train_file.split(".")[-1]
assert extension in [
"csv",
"json",
"txt",
], "`train_file` should be a csv, json or txt file."
if args.validation_file is not None:
extension = args.validation_file.split(".")[-1]
assert extension in [
"csv",
"json",
"txt",
], "`validation_file` should be a csv, json or txt file."
if args.sampling_type == "none":
# if we are not sampling, dont test random subtransformers every n epochs
args.eval_random_subtransformers = False
# Sanity checks
if (
args.task_name is None
and args.train_file is None
and args.validation_file is None
):
raise ValueError("Need either a task name or a training/validation file.")
else:
if args.train_file is not None:
extension = args.train_file.split(".")[-1]
assert extension in [
"csv",
"json",
], "`train_file` should be a csv or a json file."
if args.validation_file is not None:
extension = args.validation_file.split(".")[-1]
assert extension in [
"csv",
"json",
], "`validation_file` should be a csv or a json file."
if args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
if args.tiny_attn == 1:
assert args.mixing == "gmlp", "Tiny Attention can work only in GMLP setup"
if args.mixing == "gmlp" and not args.pad_to_max_length:
raise ValueError("Need to pad to max length when using gmlp")
if args.output_dir is not None and args.resume_from_checkpoint_dir is None:
task_name = args.task_name.split("/")[-1].strip()
args.output_dir += (
"/" + task_name + "_" + args.mixing + "_" + get_current_datetime()
)
args.optim_scheduler_states_path = os.path.join(
args.output_dir, "optimizer_scheduler.pt"
)
os.makedirs(args.output_dir, exist_ok=True)
if args.resume_from_checkpoint_dir is not None:
args.optim_scheduler_states_path = os.path.join(
args.resume_from_checkpoint_dir,
"optimizer_scheduler.pt",
)
check_path(args.resume_from_checkpoint_dir)
check_path(args.optim_scheduler_states_path)
model_path = os.path.join(args.resume_from_checkpoint_dir, "pytorch_model.bin")
check_path(model_path)
# overwrite on the same directory
args.output_dir = args.resume_from_checkpoint_dir
if args.subtransformer_config_path:
check_path(args.subtransformer_config_path)
assert (
args.sampling_type == "none"
), "sampling_type is not supported when providing custom_subtransformer_config"
assert (
args.eval_random_subtransformers == 0
), "no need to evaluate random subtransformers when a custom_subtransformer_config is provided"
if args.is_mnli_checkpoint:
assert args.task_name in [
"mrpc",
"stsb",
"rte",
], "mnli pretrained checkpoint can only be used for MRPC, STSB, RTE "
if args.task_name in ["snli", "scitail", "elue_sst2", "imdb"]:
assert (
args.elue_dir is not None
), "elue_dir is required for snli, scitail, elue_sst2, imdb"
check_path(args.elue_dir)
if args.elue_dir is not None:
check_path(args.elue_dir)
assert args.task_name in [
"elue_sst2",
"imdb",
"snli",
"scitail",
], "elue_dir can only be used for elue_sst2, imdb"
return args
def validate_subtransformer(model, task_name, eval_dataloader, accelerator):
is_regression = task_name == "stsb"
is_elue = task_name in ["imdb", "snli", "scitail", "elue_sst2"]
if is_elue:
metric = load_metric("accuracy")
elif task_name is not None:
metric = load_metric("glue", task_name)
else:
metric = load_metric("accuracy")
model.eval()
for step, batch in enumerate(eval_dataloader):
with torch.no_grad():
outputs = model(**batch)
predictions = (
outputs.logits.argmax(dim=-1)
if not is_regression
else outputs.logits.squeeze()
)
metric.add_batch(
predictions=accelerator.gather(predictions),
references=accelerator.gather(batch["labels"]),
)
eval_metric = metric.compute()
return eval_metric
def main():
args = parse_args()
param = DistributedDataParallelKwargs(
find_unused_parameters=True, check_reduction=False
)
# Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
accelerator = Accelerator(fp16=args.fp16, kwargs_handlers=[param])
show_args(accelerator, args)
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state)
# Setup logging, we only want one process per machine to log things on the screen.
# accelerator.is_local_main_process is only True for one process per machine.
logger.setLevel(
logging.INFO if accelerator.is_local_main_process else logging.ERROR
)
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_warning()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
str_name = (
args.mixing + "_tiny_attn"
if args.tiny_attn == 1
else args.mixing + "_" + args.sampling_type
)
if args.subtransformer_config_path:
str_name += "_custom_subtransformer"
if args.wandb_suffix:
str_name += "_" + args.wandb_suffix
if args.debug:
str_name = "debugging"
if accelerator.is_main_process:
wandb.init(
project=args.wandb_project,
entity=args.wandb_entity,
name=args.task_name.split("/")[-1].strip() + "_" + str_name,
)
if args.output_dir is not None and args.resume_from_checkpoint_dir is None:
dataset_name = args.task_name.split("/")[-1].strip()
args.output_dir += (
"/" + dataset_name + "_" + str_name + "_" + get_current_datetime()
)
args.optim_scheduler_states_path = os.path.join(
args.output_dir, "{}/optimizer_scheduler.pt"
)
os.makedirs(args.output_dir, exist_ok=True)
# Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
# or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub).
# For CSV/JSON files, this script will use as labels the column called 'label' and as pair of sentences the
# sentences in columns called 'sentence1' and 'sentence2' if such column exists or the first two columns not named
# label if at least two columns are provided.
# If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this
# single column. You can easily tweak this behavior (see below)
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if args.elue_dir is not None:
taskname2folder = {
"imdb": "IMDb",
"snli": "SNLI",
"scitail": "SciTail",
"elue_sst2": "SST-2",
}
task = taskname2folder[args.task_name]
data_files = {}
train_file = os.path.join(args.elue_dir, task, "train.tsv")
eval_file = os.path.join(args.elue_dir, task, "dev.tsv")
test_file = os.path.join(args.elue_dir, task, "test.tsv")
data_files["train"] = train_file
data_files["validation"] = eval_file
raw_datasets = load_dataset(
"csv", delimiter="\t", quoting=3, data_files=data_files
)
all_columns = set(raw_datasets["train"].features.keys())
required_columns = set(task_to_keys[args.task_name] + ("label",))
unwanted_columns = list(all_columns - required_columns)
raw_datasets["train"].remove_columns(unwanted_columns)
elif args.task_name is not None:
# Downloading and loading a dataset from the hub.
raw_datasets = load_dataset("glue", args.task_name)
if args.debug:
raw_datasets["train"] = raw_datasets["train"].select(range(100))
else:
# Loading the dataset from local csv or json file.
data_files = {}
if args.train_file is not None:
data_files["train"] = args.train_file
if args.validation_file is not None:
data_files["validation"] = args.validation_file
extension = (
args.train_file if args.train_file is not None else args.valid_file
).split(".")[-1]
raw_datasets = load_dataset(extension, data_files=data_files)
# See more about loading any type of standard or custom dataset at
# https://huggingface.co/docs/datasets/loading_datasets.html.
if args.aug_train_file is not None:
logger.info(f"Loading Augmented Glue Train file for {args.task_name}")
# extension = (args.aug_train_file).split(".")[-1]
aug_datasets = load_dataset(
"csv", delimiter="\t", quoting=3, data_files=args.aug_train_file
)
raw_datasets["train"] = aug_datasets["train"]
all_columns = set(raw_datasets["train"].features.keys())
required_columns = set(task_to_keys[args.task_name] + ("label",))
unwanted_columns = list(all_columns - required_columns)
raw_datasets["train"].remove_columns(unwanted_columns)
# Labels
if args.aug_train_file is not None or args.elue_dir is not None:
is_regression = args.task_name == "stsb"
if not is_regression:
label_list = raw_datasets["train"].unique("label")
label_list.sort() # Let's sort it for determinism
num_labels = len(label_list)
else:
num_labels = 1
elif args.task_name is not None:
is_regression = args.task_name == "stsb"
if not is_regression:
label_list = raw_datasets["train"].features["label"].names
num_labels = len(label_list)
else:
num_labels = 1
else:
# Trying to have good defaults here, don't hesitate to tweak to your needs.
is_regression = raw_datasets["train"].features["label"].dtype in [
"float32",
"float64",
]
if is_regression:
num_labels = 1
else:
# A useful fast method:
# https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.unique
label_list = raw_datasets["train"].unique("label")
label_list.sort() # Let's sort it for determinism
num_labels = len(label_list)
# Load pretrained model and tokenizer
#
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
# config = AutoConfig.from_pretrained(
# args.model_name_or_path, num_labels=num_labels, finetuning_task=args.task_name
# )
global_config = get_supertransformer_config("bert-base-cased", mixing=args.mixing)
global_config.rewire = args.rewire
global_config.layer_drop_prob = 0.0
tokenizer = AutoTokenizer.from_pretrained(
"bert-base-cased", use_fast=not args.use_slow_tokenizer
)
if args.max_length:
global_config.max_seq_length = args.max_length
else:
logger.warning(
f"The max_seq_length is not defined!! Setting it to max length in tokenizer"
)
global_config.max_seq_length = tokenizer.model_max_length
global_config.num_labels = num_labels
# global_config.hidden_dropout_prob = 0
if args.subtransformer_config_path is not None:
subtransformer_config = read_json(args.subtransformer_config_path)
for key, value in subtransformer_config.items():
# update global_config with attributes of subtransformer_config
setattr(global_config, key, value)
logger.info(
"=================================================================="
)
logger.info(
f"Number of parameters in custom config is {millify(calculate_params_from_config(global_config, scaling_laws=False, add_output_emb_layer=False))}"
)
logger.info(
"=================================================================="
)
if args.mixing == "mobilebert":
model = custom_mobile_bert.MobileBertForSequenceClassification.from_pretrained(
args.model_name_or_path, config=global_config
)
else:
model = custom_bert.BertForSequenceClassification.from_pretrained(
args.model_name_or_path,
config=global_config,
ignore_mismatched_sizes=args.is_mnli_checkpoint,
)
logger.info(summary(model, depth=4, verbose=0))
# Preprocessing the datasets
if args.task_name is not None:
sentence1_key, sentence2_key = task_to_keys[args.task_name]
else:
# Again, we try to have some nice defaults but don't hesitate to tweak to your use case.
non_label_column_names = [
name for name in raw_datasets["train"].column_names if name != "label"
]
if (
"sentence1" in non_label_column_names
and "sentence2" in non_label_column_names
):
sentence1_key, sentence2_key = "sentence1", "sentence2"
else:
if len(non_label_column_names) >= 2:
sentence1_key, sentence2_key = non_label_column_names[:2]
else:
sentence1_key, sentence2_key = non_label_column_names[0], None
# Some models have set the order of the labels to use, so let's make sure we do use it.
label_to_id = None
if (
model.config.label2id != PretrainedConfig(num_labels=num_labels).label2id
and args.task_name is not None
and not is_regression
):
# Some have all caps in their config, some don't.
label_name_to_id = {k.lower(): v for k, v in model.config.label2id.items()}
if list(sorted(label_name_to_id.keys())) == list(sorted(label_list)):
logger.info(
f"The configuration of the model provided the following label correspondence: {label_name_to_id}. "
"Using it!"
)
label_to_id = {
i: label_name_to_id[label_list[i]] for i in range(num_labels)
}
else:
logger.warning(
"Your model seems to have been trained with labels, but they don't match the dataset: ",
f"model labels: {list(sorted(label_name_to_id.keys()))}, dataset labels: {list(sorted(label_list))}."
"\nIgnoring the model labels as a result.",
)
elif args.task_name is None:
label_to_id = {v: i for i, v in enumerate(label_list)}
if args.aug_train_file is not None:
aug_label_to_id = label_list_for_aug_data[args.task_name]
if label_to_id is not None:
model.config.label2id = label_to_id
model.config.id2label = {
id: label for label, id in global_config.label2id.items()
}
padding = "max_length" if args.pad_to_max_length else False
val_col = "validation_matched" if args.task_name == "mnli" else "validation"
logger.info(f"Label2Id: {label_to_id}")
def preprocess_function(examples, aug_dataset=False):
# Tokenize the texts
texts = (
(examples[sentence1_key],)
if sentence2_key is None
else (examples[sentence1_key], examples[sentence2_key])
)
result = tokenizer(
*texts, padding=padding, max_length=args.max_length, truncation=True
)
if "label" in examples:
if aug_dataset:
# result["labels"] = [aug_label_to_id[l] for l in examples["label"]]
result["labels"] = examples["label"]
elif label_to_id is not None:
# Map labels to IDs (not necessary for GLUE tasks)
result["labels"] = [label_to_id[l] for l in examples["label"]]
else:
# In all cases, rename the column to labels because the model will expect that.
result["labels"] = examples["label"]
return result
fn_kwargs = dict(
aug_dataset=args.aug_train_file is not None,
)
processed_datasets_train = raw_datasets["train"].map(
preprocess_function,
fn_kwargs=fn_kwargs,
batched=True,
remove_columns=raw_datasets["train"].column_names,
desc="Running tokenizer on dataset",
)
val_col = "validation_matched" if args.task_name == "mnli" else "validation"
processed_datasets_valid = raw_datasets[val_col].map(
preprocess_function,
batched=True,
remove_columns=raw_datasets[val_col].column_names,
desc="Running tokenizer on dataset",
)
if args.task_name == "mnli":
processed_datasets_valid_mm = raw_datasets["validation_mismatched"].map(
preprocess_function,
batched=True,
remove_columns=raw_datasets["validation_mismatched"].column_names,
desc="Running tokenizer on dataset",
)
train_dataset = processed_datasets_train
eval_dataset = processed_datasets_valid
# Log a few random samples from the training set:
for index in random.sample(range(len(train_dataset)), 3):
logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")
# DataLoaders creation:
if args.pad_to_max_length:
# If padding was already done ot max length, we use the default data collator that will just convert everything
# to tensors.
data_collator = default_data_collator
else:
# Otherwise, `DataCollatorWithPadding` will apply dynamic padding for us (by padding to the maximum length of
# the samples passed). When using mixed precision, we add `pad_to_multiple_of=8` to pad all tensors to multiple
# of 8s, which will enable the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta).
data_collator = DataCollatorWithPadding(
tokenizer, pad_to_multiple_of=(8 if accelerator.use_fp16 else None)
)
train_dataloader = DataLoader(
train_dataset,
shuffle=True,
collate_fn=data_collator,
batch_size=args.per_device_train_batch_size,
)
eval_dataloader = DataLoader(
eval_dataset,
collate_fn=data_collator,
batch_size=args.per_device_eval_batch_size,
)
# Optimizer
# Split weights in two groups, one with weight decay and the other not.
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [
p
for n, p in model.named_parameters()
if not any(nd in n for nd in no_decay)
],
"weight_decay": args.weight_decay,
},
{
"params": [
p
for n, p in model.named_parameters()
if any(nd in n for nd in no_decay)
],
"weight_decay": 0.0,
},
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate)
if args.resume_from_checkpoint_dir is not None:
logger.info("Loading model weights from checkpoint ..")
# we load the model before preparing
# see this for details: https://github.com/huggingface/accelerate/issues/95
model.from_pretrained(args.resume_from_checkpoint_dir)
optim_scheduler_states = torch.load(args.optim_scheduler_states_path)
logger.info("Loading optimizer states from checkpoint dir ..")
accelerator.scaler.load_state_dict(optim_scheduler_states["scaler"])
optimizer.load_state_dict(optim_scheduler_states["optimizer"])
# Prepare everything with our `accelerator`.
model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare(
model, optimizer, train_dataloader, eval_dataloader
)
if (
accelerator.distributed_type == DistributedType.MULTI_GPU
or accelerator.distributed_type == DistributedType.TPU
):
# forward missing getattr and state_dict/load_state_dict to orig model
model = ModuleProxyWrapper(model)
# Note -> the training dataloader needs to be prepared before we grab his length below (cause its length will be
# shorter in multiprocess)
# model.set_sample_config(global_config)
if hasattr(global_config, "depth_features"):
model.set_sample_config(global_config, drop_vector=global_config.depth_features)
else:
model.set_sample_config(global_config, drop_layers=False)
# Scheduler and math around the number of training steps.
num_update_steps_per_epoch = math.ceil(
len(train_dataloader) / args.gradient_accumulation_steps
)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
else:
args.num_train_epochs = math.ceil(
args.max_train_steps / num_update_steps_per_epoch
)
lr_scheduler = get_scheduler(
name=args.lr_scheduler_type,
optimizer=optimizer,
num_warmup_steps=args.num_warmup_steps,
num_training_steps=args.max_train_steps,
)
if args.resume_from_checkpoint_dir is not None:
logger.info("Loading scheduler and scalar states from checkpoint dir ..")
completed_epochs = optim_scheduler_states["epoch"]
completed_steps = optim_scheduler_states["steps"]
lr_scheduler.load_state_dict(optim_scheduler_states["scheduler"])
logger.info(f"epochs: {completed_epochs}, completed_steps: {completed_steps}")
assert (completed_epochs < args.num_train_epochs) and (
completed_steps < args.max_train_steps
), "model is already trained to specified number of epochs or max steps"
else:
completed_epochs = 0
completed_steps = 0
# Get the metric function
is_regression = args.task_name == "stsb"
is_elue = args.task_name in ["imdb", "snli", "scitail", "elue_sst2"]
if is_elue:
metric = load_metric("accuracy")
elif args.task_name is not None:
metric = load_metric("glue", args.task_name)
else:
metric = load_metric("accuracy")
if args.task_name == "stsb":
metric_key = "spearmanr"
elif args.task_name == "cola":
metric_key = "matthews_correlation"
else:
metric_key = "accuracy"
early_stopping = EarlyStopping(metric_key, patience=args.early_stopping_patience)
# Train!
total_batch_size = (
args.per_device_train_batch_size
* accelerator.num_processes
* args.gradient_accumulation_steps
)
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(
f" Instantaneous batch size per device = {args.per_device_train_batch_size}"
)
logger.info(
f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}"
)
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(
f" Total optimization steps = {args.max_train_steps}, {completed_steps} steps completed so far"
)
# Only show the progress bar once on each machine.
progress_bar = tqdm(
range(args.max_train_steps), disable=not accelerator.is_local_main_process
)
if accelerator.is_main_process:
wandb.watch(model)
sampler = Sampler(args.sampling_type, "none", args.mixing, global_config)
if args.eval_random_subtransformers:
if args.mixing == "mobilebert":
diverse_num_intra_subs = sampler.get_diverse_subtransformers(
"sample_intra_bottleneck_size"
)
diverse_subtransformers = diverse_num_intra_subs
marker_colors = ["black"] * len(diverse_num_intra_subs)
sampling_dimensions = [
"sample_hidden_size",
"sample_num_attention_heads",
"sample_intermediate_size",
"sample_num_hidden_layers",
"sample_intra_bottleneck_size",