-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
261 lines (214 loc) · 11.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import numpy as np
import random
import torch
import sys
import argparse
import pathlib
import copy
from utils import get_config, average
from environment import CircuitEnv
from uflp_env import UflpEnv
import agents
import time
from collections import deque
torch.set_num_threads(1)
class Saver:
def __init__(self, results_path, experiment_seed):
self.stats_file = {'train': {}, 'test': {}}
self.exp_seed = experiment_seed
self.rpath = results_path
def get_new_episode(self, mode, episode_no):
if mode == 'train':
self.stats_file[mode][episode_no] = {'loss': [],
'actions': [],
'errors': [],
'done_threshold': 0,
'bond_distance': 0,
'opt_ang' : [],
'save_circ' : [],
'ent_neg' : [],
'grad' : [],
}
elif mode == 'test':
self.stats_file[mode][episode_no] = {'actions': [],
'errors': [],
'done_threshold': 0,
'bond_distance': 0,
'opt_ang' : [],
'save_circ' : [],
'ent_neg' : [],
}
def save_file(self):
np.save(f'{self.rpath}/summary_{self.exp_seed}.npy', self.stats_file)
def validate_stats(self, episode, mode):
assert len(self.stats_file[mode][episode]['actions']) == len(self.stats_file[mode][episode]['errors'])
def modify_state(state,env):
# if not conf['agent']['angles']:
# state = state[:-env.num_layers]
if conf['agent']['en_state']:
# print(state, torch.tensor(env.prev_energy, dtype=torch.float,device=device).view(1))
state = torch.cat((state, torch.tensor(env.prev_energy,dtype=torch.float,device=device).view(1)))
# print(state)
if "threshold_in_state" in conf['agent'].keys() and conf['agent']["threshold_in_state"]:
state = torch.cat((state, torch.tensor(env.done_threshold,dtype=torch.float,device=device).view(1)))
return state
def agent_test(env, agent, episode_no, seed, output_path,threshold):
""" Testing function of the trained agent. """
agent.saver.get_new_episode('test', episode_no)
state = env.reset()
state = modify_state(state, env)
current_epsilon = copy.copy(agent.epsilon)
agent.policy_net.eval()
for itr in range(env.num_layers + 1):
ill_action_from_env = env.update_illegal_actions()
agent.epsilon = 0
with torch.no_grad():
action, _ = agent.act(state, ill_action_from_env)
assert type(action) == int
agent.saver.stats_file['test'][episode_no]['actions'].append(action)
next_state, reward, done = env.step(agent.translate[action],train_flag=False)
next_state = modify_state(next_state, env)
state = next_state.clone()
assert type(env.error) == float
agent.saver.stats_file['test'][episode_no]['errors'].append(env.error)
agent.saver.stats_file['test'][episode_no]['save_circ'].append(env.save_circ)
agent.saver.stats_file['test'][episode_no]['opt_ang'].append(env.opt_ang)
if done:
agent.saver.stats_file['test'][episode_no]['done_threshold'] = env.done_threshold
# agent.saver.stats_file['test'][episode_no]['bond_distance'] = env.current_bond_distance
errors_current_bond = [val['errors'][-1] for val in agent.saver.stats_file['test'].values()
if val['done_threshold'] == env.done_threshold]
if len(errors_current_bond) > 0 and min(errors_current_bond) > env.error:
torch.save(agent.policy_net.state_dict(), f"{output_path}/thresh_{threshold}_{seed}_best_geo_{env.current_bond_distance}_model.pth")
torch.save(agent.optim.state_dict(), f"{output_path}/thresh_{threshold}_{seed}_best_geo_{env.current_bond_distance}_optim.pth")
agent.epsilon = current_epsilon
agent.saver.validate_stats(episode_no, 'test')
return reward, itr
def one_episode(episode_no, env, agent, episodes):
""" Function performing full training episode."""
agent.saver.get_new_episode('train', episode_no)
state = env.reset()
# agent.saver.stats_file['train'][episode_no]['bond_distance'] = env.current_bond_distance
agent.saver.stats_file['train'][episode_no]['done_threshold'] = env.done_threshold
# assert all(state == env.state.view(-1).to(device)), "Problem with internal state"
state = modify_state(state, env)
agent.policy_net.train()
for itr in range(env.num_layers + 1):
ill_action_from_env = env.update_illegal_actions()
# print('main:', ill_action_from_env)
if isinstance(agent, agents.BootstrappedDQN.BootstrappedDQN):
action, _ = agent.act(state, ill_action_from_env,random.randint(0,agent.head_count-1))
else:
action, _ = agent.act(state, ill_action_from_env)
assert type(action) == int
agent.saver.stats_file['train'][episode_no]['actions'].append(action)
next_state, reward, done = env.step(agent.translate[action])
# assert all(next_state == env.state.view(-1).to(device)), "Problem with internal state"
next_state = modify_state(next_state, env)
agent.remember(state,
torch.tensor(action, device=device),
reward,
next_state,
torch.tensor(done, device=device))
state = next_state.clone()
assert type(env.error) == float
agent.saver.stats_file['train'][episode_no]['errors'].append(env.error)
agent.saver.stats_file['train'][episode_no]['save_circ'].append(env.save_circ)
agent.saver.stats_file['train'][episode_no]['opt_ang'].append(env.opt_ang)
agent.saver.stats_file['train'][episode_no]['ent_neg'].append(env.ent_neg_quantfier)
agent.saver.stats_file['train'][episode_no]['grad'].append(env.gradient)
if agent.memory_reset_switch:
if env.error < agent.memory_reset_threshold:
agent.memory_reset_counter += 1
if agent.memory_reset_counter == agent.memory_reset_switch:
agent.memory.clean_memory()
agent.memory_reset_switch = False
agent.memory_reset_counter = False
if done:
if episode_no%5==0:
print("episode: {}/{}, score: {}, e: {:.2}, rwd: {} \n"
.format(episode_no, episodes, itr, agent.epsilon, reward),flush=True)
break
# training of the network
if len(agent.memory) > conf['agent']['batch_size']:
if "replay_ratio" in conf['agent'].keys():
if itr % conf['agent']["replay_ratio"]==0:
loss = agent.replay(conf['agent']['batch_size'])
else:
loss = agent.replay(conf['agent']['batch_size'])
assert type(loss) == float
agent.saver.stats_file['train'][episode_no]['loss'].append(loss)
agent.saver.validate_stats(episode_no, 'train')
# print(loss)
# exit()
def train(agent, env, episodes, seed, output_path,threshold):
"""Training loop"""
threshold_crossed = 0
depth_buffer = deque([],maxlen=20)
reward_buffer = deque([],maxlen=20)
for e in range(episodes):
one_episode(e, env, agent, episodes)
if e>=100:
final_rwd, depth = agent_test(env, agent, e, seed, output_path,threshold)
reward_buffer.append(final_rwd)
depth_buffer.append(depth)
print(f"Episode no.{e} \n Reward:{final_rwd} Depth:{depth} Roll avg Reward:{average(reward_buffer)} Roll avg depth:{average(depth_buffer)} Error:{env.error}\
")
if e %20==0 and e > 0:
agent.saver.save_file()
torch.save(agent.policy_net.state_dict(), f"{output_path}/thresh_{threshold}_{seed}_model.pth")
torch.save(agent.optim.state_dict(), f"{output_path}/thresh_{threshold}_{seed}_optim.pth")
torch.save( {i: a._asdict() for i,a in enumerate(agent.memory.memory)}, f"{output_path}/thresh_{threshold}_{seed}_replay_buffer.pth")
# if env.error <= 0.0016:
# threshold_crossed += 1
# print("REACHED CHEMICAL PRECISION")
# np.save( f'threshold_crossed', threshold_crossed )
def get_args(argv):
parser = argparse.ArgumentParser()
parser.add_argument('--seed', type=int, default=0, help='Seed for reproduction')
parser.add_argument('--config', type=str, default='h_s_2', help='Name of configuration file')
parser.add_argument('--experiment_name', type=str, default='lower_bound_energy/', help='Name of experiment')
parser.add_argument('--gpu_id', type=int, default=0, help='Set specific GPU to run experiment [0, 1, ...]')
args = parser.parse_args(argv)
return args
if __name__ == '__main__':
args = get_args(sys.argv[1:])
results_path ="results/"
pathlib.Path(f"{results_path}{args.experiment_name}{args.config}").mkdir(parents=True, exist_ok=True)
# device = torch.device(f"cuda:{args.gpu_id}")
device = torch.device(f"cpu:{0}")
conf = get_config(args.experiment_name, f'{args.config}.cfg')
loss_dict, scores_dict, test_scores_dict, actions_dict = dict(), dict(), dict(), dict()
torch.backends.cudnn.deterministic = True
random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
np.random.seed(args.seed)
actions_test = []
action_test_dict = dict()
error_test_dict = dict()
error_noiseless_test_dict=dict()
""" Environment and Agent initialization"""
if conf['env']['type'] == "classic":
environment = CircuitEnv(conf, device=device)
else:
environment = UflpEnv(conf, device=device)
agent = agents.__dict__[conf['agent']['agent_type']].__dict__[conf['agent']['agent_class']](conf, environment.action_size, environment.state_size, device)
# print(agent)
agent.saver = Saver(f"{results_path}{args.experiment_name}{args.config}", args.seed)
if conf['agent']['init_net']: # Load network from pretrained weights
PATH = f"{results_path}{conf['agent']['init_net']}{args.seed}"
agent.policy_net.load_state_dict(torch.load(PATH+f"_model.pth"))
agent.target_net.load_state_dict(torch.load(PATH+f"_model.pth"))
agent.optim.load_state_dict(torch.load(PATH+f"_optim.pth"))
agent.policy_net.eval()
agent.target_net.eval()
replay_buffer_load = torch.load(f"{PATH}_replay_buffer.pth")
for i in replay_buffer_load.keys():
agent.remember(**replay_buffer_load[i])
if not conf['agent']['epsilon_restart']:
agent.epsilon = agent.epsilon_min
train(agent, environment, conf['general']['episodes'], args.seed, f"{results_path}{args.experiment_name}{args.config}",conf['env']['accept_err'])
agent.saver.save_file()
torch.save(agent.policy_net.state_dict(), f"{results_path}{args.experiment_name}{args.config}/thresh_{conf['env']['accept_err']}_{args.seed}_model.pth")
torch.save(agent.optim.state_dict(), f"{results_path}{args.experiment_name}{args.config}/thresh_{conf['env']['accept_err']}_{args.seed}_optim.pth")