-
Notifications
You must be signed in to change notification settings - Fork 496
/
Copy pathNQueenProblem.cpp
80 lines (70 loc) · 2.45 KB
/
NQueenProblem.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
/*
* Implementation of popular N-Queen Problem using Backtracking algorithm.
* The size of a chess board is given, suppose n, then we have to suggest such a configuration than n queens could be placed on the chess board and no queen is under attack
* There can be a number of possible solutions for a specific board.
* This implementation prints only one valid configuration, it can be extended to print all possible valid configurations.
* A good example of recursion.
* You can see the solution for various sizes by changing the value of Size in 13th line..
*/
#include <iostream>
#include <cstring>
using namespace std;
#define SIDE 8 /* Size of the board = (SIDE X SIDE) */
/* The Queen is safe, if
* There's no other Queen in the same row.
* There's no other Queen in the same column.
* There's no other Queen in the same diagonal.
*/
bool queen_is_safe(int board[SIDE][SIDE], int row, int col) {
int i,j;
for (i = 0; i < col; i++) {
if (board[row][i] == 1) {
return false; // * return false, if there's another Queen present in the same row.
}
}
for (i = row, j = col; i >= 0 && j >= 0; i--, j--) {
if (board[i][j] == 1) {
return false; // * return false, if there's another Queen present in the upper diagonal.
}
}
for (i = row, j = col; j >= 0 && i < SIDE; i++, j--) {
if (board[i][j]==1) {
return false; // * return false, if there's another Queen present in the lower diagonal.
}
}
return true;
}
bool n_queen_solution(int board[SIDE][SIDE], int col) {
if (col >= SIDE) {
return true; // * return true,
}
for (int i = 0; i < SIDE; i++) {
if ( queen_is_safe(board, i, col) ) {
board[i][col] = 1; // * A queen is placed on (i, col).
if (n_queen_solution(board, col + 1)) { // * Calling n_queen_solution() to place the rest of the queens.
return true;
} else {
board[i][col] = 0; // * Backtrack
}
}
}
return false;
}
int main() {
int board[SIDE][SIDE]; // * A chess board of rows = SIDE & columns = SIDE.
memset(board, 0, sizeof(board)); // * Initially the board is empty, so all elements of 2-D array board are 0.
if ( n_queen_solution(board, 0) == false ) {
cout << "No possible configuration exists.\n\n";
return 0;
}
// * Printing the answer.
cout << "\n No. of queens = " << SIDE << "\n";
cout << "\n Chess board size = " << SIDE << " X " << SIDE << "\n\n";
for (int i = 0; i < SIDE; i++) {
for (int j = 0; j < SIDE; j++) {
cout << " "<<board[i][j];
}
cout << "\n\n";
}
return 0;
}