-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathacamred.py
364 lines (342 loc) · 15.1 KB
/
acamred.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
#!/scisoft/bin/python
'''
pyraf equivalents of speedup.cl, processccd.cl, combflat.cl, CCDsort.cl, and IRsort.cl
these functions mirror their iraf counterparts pretty closesly, and function in the same way
the pyraf wrapper prevents caching problems and lets us easily change directories, execute functions etc
some projects have special places to pick up data, like the blazar group
the photometric standards, xrb group, and bethany. specific checks are made for those data
'''
import pyfits, os, fnmatch, glob, subprocess
from pyraf import iraf
iraf.prcacheOff()
def cpCals(date, fwheel=['sky','V','R','I'], outdir='.'):
'''
copy the calibration frames from the date specified by "date" to the directory specefied by "outdir"
input:
date: YYYYMMDD of the date directory you want to get data from. program will look under
/data/yalo180/yalo/SMARTS13m/date/ccd/processed/ for calibrations
fwheel: python list specifying the filters of the calibrations you want to copy. by default includes all of them
outdir: string specifying the path you want to copy the calibrations to. by default set to "."
output:
None
'''
date=str(date)
if len(glob.glob('/data/yalo180/yalo/SMARTS13m/'+date)) == 1:
for f in fwheel:
try:
subprocess.check_output('cp -v /data/yalo180/yalo/SMARTS13m/'+date+'/ccd/processed/ccd*'+f+'*.fits '+ outdir, shell=True)
except subprocess.CalledProcessError:
print "unable to copy %s calibrations from /data/yalo180/yalo/SMARTS13m/%s/ccd/processed" % (f, date)
else:
print "the directory /data/yalo180/yalo/SMARTS13m/%s cannot be found" % date
return
def skyflat(date, low=15000, high=23000, numimages=5):
'''
make a combined b skyflat.
Requires: a bias image in same directory to do the bias subtraction
skyflats must be offset and have appropriate count number
input: the date the skyflats were observed YYMMDD
output: flat.B, a text file that lists the names of the skyflat fits files
ccdYYMMDD.skyflatB.fits, the combined skyflat
'''
#check if biases are in this directory
if len(glob.glob('*.bias.*')) < 1:
print "no combined bias found, exiting"
return
#get image name and mean pixel value for all skyflat images
stats=iraf.imstat('*sky*',format=False,fields='image,mean',Stdout=1)
pairs=[i.split() for i in stats]
#write the names of the skyflats w right ammount of counts to file
#keep track of how many good ones there are
goodCount=0
with open("flat.B",'w') as FB:
for i in pairs:
if float(i[1]) > low and float(i[1]) < high:
FB.write(i[0]+'\n')
goodCount+=1
if goodCount < numimages:
print "only "+str(goodCount)+" skyflats have counts between "+str(low)+" and "+str(high)
print "no combined skyflat made"
return
else:
iraf.ccdproc(images="@flat.B",output=" ",fixpix="no",overscan="yes",trim="no",zerocor="yes",darkcor="no",flatcor="no",illumcor="no",fringecor="no",readcor="no",scancor="no",readaxis="line",biassec="[3:14,1:1024]",zero="*.bias.fits",interactive="no",functio="spline3",order=11)
iraf.flatcombine("@flat.B",output="FLAT",combine="median",reject="minmax",process="no",scale="mode",ccdtype="")
os.system("mv FLAT.fits ccd"+str(date)+".skyflatB.fits")
print ("made combined skyflat ccd"+str(date)+".skyflatB.fits")
return
def optdomecomb(date, fwheel=['bias','B','V','R','I']):
'''
#combine biases and optical domes
#Requires: the uncombined fits images
# if you are combining a dome, you must have a bias from the same night as the dome to preform appropriate bias subtraction
#Input: the date the domes were observed YYMMDD, and fwheel, a list that contains the filters of the domes to be combined
#Outupt: combined dome fits frame for each color where uncombined frames are in the directory
'''
#convert date to string incase it was entered as an int of float
date=str(date)
if len(glob.glob('*bias*')) < 1:
print "no biases found, exiting"
return
else:
for color in fwheel:
if color=='bias':
biaslist=glob.glob('*bias.[0-9]*')
if len(biaslist) > 10:
print "only "+str(len(biaslist))+" biases found. you need at least 10"
else:
with open("bias.list",'w') as BILIS:
for i in biaslist:
BILIS.write(i+'\n')
iraf.zerocombine("@bias.list",output="ccd"+str(date)+".bias.fits",combine="average",reject="minmax",scale="none",ccdtype="",process="no",delete="no",clobber="no",nlow=1,nhigh=1,nkeep=1)
print "created ccd"+str(date)+".bias.fits"
os.system('rm bias.list')
elif color in ['B','V','R','I']:
domelist=glob.glob('*dome'+color+'.[0-9]*')
if len(domelist) < 1:
print 'no '+color+' domes found'
elif len(domelist) > 10:
print 'only '+str(len(domelist))+' domes found. you need at least 10'
else:
with open('flat'+color+'.list', 'w') as flist:
for i in domelist:
flist.write(i+'\n')
iraf.ccdproc("@flat"+color+".list", output="z@flat"+color+".list",ccdtype=" ",noproc="no", fixpix="no",overscan="yes", trim="no", zerocor="yes",darkcor="no",flatcor="no", illumcor="no", fringec="no", readcor="no", scancor="no", readaxis="line", biassec="[3:14,1:1024]", zero="ccd"+str(date)+".bias.fits", interactive="no", functio="spline3", order=11)
iraf.flatcombine("z@flat"+color+".list", output="ccd"+str(date)+".dome"+color+".fits",combine="average", reject="crreject", ccdtype="", process="no", subsets="no", delete="no", clobber="no", scale="mode", rdnoise=6.5, gain=2.3)
os.system('rm z*dome'+color+'*fits')
print "created ccd"+str(date)+".dome"+color+".fits"
os.system('rm flat'+color+'.list')
else:
print "your input for the filter was not recognized. Please use either 'bias', 'B', 'V', 'R', or 'I' and try again"
return
def speedup():
'''
prepares optical images for reduction
requires: skyflatB, ccd domes, ccd bias, ccd data, in directory when function is run
input: none
output: in.{B,V,R,I}, are txt files which list images observed in b,v,r, and i filters
'''
#the observer may have forgotten to delete focus, trim, and junk frames
if len(glob.glob('*junk*')) > 0:
os.system('rm *junk*')
if len(glob.glob('*foco*')) > 0:
os.system('rm *foco*')
if len(glob.glob('*trim*')) > 0:
os.system("rm *trim*")
os.system("mkdir calibs")
os.system("mv *bias* calibs")
os.system("mv *ky* calibs")
os.system("mv *dome* calibs")
rawimages=glob.glob('ccd*.fits')
#open in files for writting
B = open("in.B",'w')
V = open("in.V",'w')
R = open("in.R",'w')
I = open("in.I",'w')
for im in rawimages:
hdulist=pyfits.open(im)
filt=hdulist[0].header['CCDFLTID']
hdulist.close()
if filt=='B':
B.write(im+'\n')
elif filt=='V' or filt=='V+ND4':
V.write(im+'\n')
elif filt=='R':
R.write(im+'\n')
elif filt=='I' or filt=='I+ND4':
I.write(im+'\n')
else:
print "filter for "+im+" is listed as "+filt+" and is not recognized"
print im+" will not be reduced"
#close in files
B.close()
V.close()
R.close()
I.close()
os.chdir("calibs") #os.system("cd wherever") doesnt work o_O
if len(glob.glob("*dome*.0*")) > 0:
os.system("rm *dome*.0*")
if len(glob.glob('*domeB*')) > 0:
os.system("rm *domeB*")
if len(glob.glob("*bias.0*")) > 0:
os.system("rm *bias.0*")
iraf.hselect(images="*",fields="$I,date-obs,time-obs,ccdfltid,exptime",expr="yes")
print ("------------------------------")
print ("hsel *ky* $I,ra,dec,ccdfltid,exptime")
iraf.hselect(images="*ky*",field="$I,ra,dec,ccdfltid,exptime", expr="yes")
print ("------------------------------")
os.system("mv * ../")
os.chdir("../") #new to this version, go back one directory to processed/ level
return
def optreduce(fwheel):
'''
reduces optical andicam data
required: combined optical biases and flats, unreduced data need to be in working directory
also in.{B,V,R,I} and out.{B,V,R,I}, which are text files that list data taken w respective filters
input: fwheel is a python list that holds the names of the filters for which you want to reduce
output: rccd versions of ccd*.fits images which are bias and flat corrected are output in working directory
make sure we have a bias so we can bias subtract the data
'''
if len(glob.glob('*.bias*')) < 1:
print "no combined bias found, exiting. Please place a combined bias in this directory and try agian"
return
else:
for color in fwheel:
#check that all necessary files exist for reduction, in.color, out.color
if len(glob.glob('in.'+color)) < 1:
print "in."+color+" not found. "+color+" data will not be reduced. Please create file and try again"
#elif len(glob.glob('out.'+color)) < 1:
# print "out."+color+" not found. "+color+" data will not be reduced. Please create file and try again"
else:
#B data uses the skyflat
if color=='B':
if len(glob.glob('*.skyflatB*')) < 1:
print "no combined B skyflat found. B data will not be reduced. Please create combined B skyflat and try again"
else:
with open("in.B") as f:
num_images=sum(1 for line in f)
if num_images > 1:
print str(num_images)+" B images found. Reducing ..."
iraf.ccdproc(images="@in.B",output="[email protected]",overscan="yes",trim="yes",zerocor="yes",darkcor="no",flatcor="yes",readaxis="line",biassec="[2:16,3:1026]",trimsec="[17:1040,3:1026]",zero="*.bias.fits",flat="*.skyflatB.fits",interactive="no",function="spline3",order="11")
else:
print "No B images found"
#all other data uses domes
elif color in ['V','R','I']:
if len(glob.glob('*.dome'+color+'.fits')) < 1:
print "no combined "+color+" dome found. "+color+" data will not be reduced. Please create combined "+color+" dome and try again"
else:
with open("in."+color) as f:
num_images=sum(1 for line in f)
if num_images > 1:
print str(num_images)+" "+color+" images found. Reducing ..."
iraf.ccdproc(images="@in."+color,output="r@in."+color,overscan="yes",trim="yes",zerocor="yes",darkcor="no",flatcor="yes",readaxis="line",biassec="[2:16,3:1026]",trimsec="[17:1040,3:1026]",zero="*.bias.fits",flat="*.dome"+color+".fits",interactive="no",function="spline3",order="11")
else:
print "No "+color+" images found."
else:
print color+" is not recognized as a filter. Please use 'B', 'V', 'R', or I"
return
def ccdproc(fwheel=['B','V','R','I']):
'''
bias and flat correct all the optical data taken
required: in.{B,V,R,I}, out.{B,V,R,I}, ccd*fits, dome{V,R,I}, skyflatB, bias
input: none
output: reduced images, with naming scheme rccd*fits. These are copied to the 'copies' subdirectory
'''
#bias subtract and flat field correct optical images
optreduce(fwheel)
#clean up all the left over crap and backup the calibrtion files
os.system("rm ccd*.[0-9]*.fits")
os.system("cp rccd*fits copies/")
os.system("cp *.dome{R,V,I}.fits /data/yalo180/yalo/SMARTS13m/PROCESSEDCALS")
os.system("cp *.skyflatB.* /data/yalo180/yalo/SMARTS13m/PROCESSEDCALS")
os.system("cp *.bias.fits /data/yalo180/yalo/SMARTS13m/PROCESSEDCALS")
return
def CCDsort():
'''
move the reduced ccd data to the appropriate project directory under /data/yalo180/yalo/SMARTS13m/CCD
required: the data you want to copy
input: none
output: owners.lis, a txt file that lists the project owners for the fits files in this directory
owners.lis is needed for the ftp upload shell scripts
'''
#os.remove('/data/yalo180/yalo/SMARTS13m/CCD/owners.lis')
fitsimages=fnmatch.filter(os.listdir('.'),'r*.fits')
owners=set([pyfits.open(i)[0].header['owner'] for i in fitsimages])
f=open('/data/yalo180/yalo/SMARTS13m/CCD/owners.lis','w')
for i in owners:
#we need the xrb data in the owners file for Dipankar now (ih 140826)
if (str(i) != 'YALE-08A-0001' and str(i) != 'ALL'):
#if (str(i) != 'YALE-03A-0001' and str(i) != 'YALE-08A-0001'):
f.write(str(i)+'\n')
f.close()
for i in fitsimages:
owner=pyfits.open(i)[0].header['owner']
if owner=='YALE-08A-0001':
os.system("mv "+ i +" /net/glast/ccd")
elif owner=='YALE-03A-0001':
os.system("cp "+ i +' /data/yalo180/yalo/SMARTS13m/CCD/ccddm/')
os.system("mv "+ i +' /net/xrb/ccd/')
elif owner=='STANDARD' or owner=='STANDARDFIELD':
os.system("mv "+ i +' /data/yalo180/yalo/SMARTS13m/CCD/ccdstandards/')
elif owner=='YALE-03A-0009':
os.system("mv "+ i +' /data/yalo180/yalo/SMARTS13m/CCD/ccdNOAO-08B-0001')
elif owner!='ALL':
os.system("mv -v "+ i +" /data/yalo180/yalo/SMARTS13m/CCD/ccd"+owner)
#iraf.imdelete(images='rccd*fits')
return
def IRsort():
'''
move the reduced ir data to the appropriate project directory under /data/yalo180/yalo/SMARTS13m/IR
required: the data you want to copy
input: none
output: owners.lis, a txt file that lists the project owners for the fits files in this directory
owners.lis is needed for the ftp upload shell scripts
'''
#os.remove('/data/yalo180/yalo/SMARTS13m/CCD/owners.lis')
fitsimages=fnmatch.filter(os.listdir('.'),'binir*.fits')
owners=set([pyfits.open(i)[0].header['owner'] for i in fitsimages])
f=open('/data/yalo180/yalo/SMARTS13m/IR/owners.lis','w')
for i in owners:
#we need the xrb data in the owners file for Dipankar now (ih 140826)
if (str(i) != 'YALE-08A-0001' and str(i) != 'ALL'):
#if (str(i) != 'YALE-03A-0001' and str(i) != 'YALE-08A-0001'):
f.write(str(i)+'\n')
f.close()
for i in fitsimages:
owner=pyfits.open(i)[0].header['owner']
if owner=='YALE-08A-0001':
os.system("mv -v "+ i +" /net/glast/ir/")
elif owner=='YALE-03A-0001':
os.system("cp -v "+ i +" /data/yalo180/yalo/SMARTS13m/IR/irdm/")
os.system("mv -v "+ i +' /net/xrb/ir/')
elif owner=='STANDARD' or owner=='STANDARDFIELD':
os.system("mv -v "+ i +' /data/yalo180/yalo/SMARTS13m/IR/irstandards/')
elif owner=='YALE-03A-0009':
os.system("mv -v "+ i +' /data/yalo180/yalo/SMARTS13m/IR/irNOAO-08B-0001')
elif owner!='ALL':
os.system("mv -v "+ i +" /data/yalo180/yalo/SMARTS13m/IR/ir"+owner)
#iraf.imdelete(images='rccd*fits')
return
def compare(ims):
'''
this is a small routine to check if the files, contained in the list ims
are identical to those with the same name in a paralell directory named processed
its kind of hard coded and i wrote it quickly
i made dirs called 'temp' parallel to 'raw' and 'processed' which i copied everything from raw into
then ran reduction routines after i made changes to them
then run this routine to see if the reduced images are different at all
it prints out the sum of the differences in the fits images. you want to see a bunch of zeros
'''
for i in ims:
hdun=pyfits.open(i)
datan=hdun[0].data
hdun.close()
hduo=pyfits.open('../processed/'+i)
datao=hduo[0].data
hduo.close()
print (datan - datao).sum()
return
def reduceall():
'''
this function calls the others above and changes directories when needed, to preform the entire reduction process
required: start in the YYMMDD/ccd/processed direcotry for the date you want to reduce
either move calibration frames into this directory, or create new ones using combflat and optdomecomb (above)
execute function and everything will (hopefully) work
input:none
output:none
'''
#filterwheel=['V','R','I']
#for f in filterwheel:
# sort.domecalibs(f)
speedup()
ccdproc()
os.chdir("copies/")
#os.system("ls")
CCDsort()
os.chdir("../../../ir/copies")
IRsort()
os.chdir("../../../CCD")
os.system("./ftpupload.sh")
os.chdir("../IR")
os.system("./ftpupload.sh")
os.chdir("../")
return