Information about the competition:
https://eval.ai/web/challenges/challenge-page/2332/overview
Clone the repository.
Download the data (https://iastate.box.com/s/p8nj1ukvwx3yo7off8y8yspdruc0mjna).
Put the unzipped folders train
, validation
, and test
on the data
folder.
I realized that depending on your OS, the folders might get unzipped differently.
Thus, make sure the data structure (after unzipping the folders) is as follows:
data/train/2022/DataPublication_final/...
data/train/2023/DataPublication_final/...
data/validation/2023/...
data/test/Test/...
Create a conda environment and install Python packages:
conda create -n mlcas2024 python=3.11
conda activate mlcas2024
conda install pandas rasterio tqdm
Create satellite features:
python -u src/process_satellite.py --data=train --year=2022
python -u src/process_satellite.py --data=train --year=2023
python -u src/process_satellite.py --data=validation --year=2023
python -u src/process_satellite.py --data=test --year=2023
Create datasets:
python -u src/create_datasets.py
Install R packages:
install.packages("tidyverse")
install.packages("lme4")
Fit a Linear Mixed Model:
Rscript src/blup.R > output/results.txt
Note: if you can't run this code from your terminal, just run it from RStudio itself or from an RStudio terminal.
Predictions will be available at output/submission.csv
. Log of the results will be at output/results.txt
.
Tested on:
- Windows 10
- CentOS 7