Skip to content

Latest commit

 

History

History
117 lines (76 loc) · 3.18 KB

README.md

File metadata and controls

117 lines (76 loc) · 3.18 KB

PaddleOCRFastAPI

GitHub

中文

A simple way to deploy PaddleOCR based on FastAPI.

Support Version

PaddleOCR Branch
v2.5 paddleocr-v2.5
v2.7 paddleocr-v2.7

Features

  • Local path image recognition
  • Base64 data recognition
  • Upload file recognition

Deployment Methods

Deploy Directly

  1. Copy the project to the deployment path

    git clone https://github.com/cgcel/PaddleOCRFastAPI.git

    The master branch is the most recent version of PaddleOCR supported by the project. To install a specific version, clone the branch with the corresponding version number.

  2. (Optional) Create new virtual environment to avoid dependency conflicts

  3. Install required dependencies

    pip3 install -r requirements.txt
  4. Run FastAPI

    uvicorn main:app --host 0.0.0.0

Docker Deployment

Test completed in Centos 7, Ubuntu 20.04, Ubuntu 22.04, Windows 10, Windows 11, requires Docker to be installed.

  1. Copy the project to the deployment path

    git clone https://github.com/cgcel/PaddleOCRFastAPI.git

    The master branch is the most recent version of PaddleOCR supported by the project. To install a specific version, clone the branch with the corresponding version number.

  2. Building a Docker Image

    docker build -t paddleocrfastapi:latest .
  3. Edit docker-compose.yml

    version: "3"
    
    services:
    
      paddleocrfastapi:
        container_name: paddleocrfastapi # Custom Container Name
        image: paddleocrfastapi:lastest # Customized Image Name & Label in Step 2
        environment:
          - TZ=Asia/Hong_Kong
          - OCR_LANGUAGE=ch # support 80 languages. refer to https://github.com/Mushroomcat9998/PaddleOCR/blob/main/doc/doc_en/multi_languages_en.md#language_abbreviations
        ports:
         - 8000:8000 # Customize the service exposure port, 8000 is the default FastAPI port, do not modify
        restart: unless-stopped
  4. Create the Docker container and run

    docker compose up -d
  5. Swagger Page at localhost:<port>/docs

Change language

  1. Clone this repo to localhost.

  2. Edit routers/ocr.py, modify the parameter "lang":

    ocr = PaddleOCR(use_angle_cls=True, lang="ch")

    Before modify, read the supported language list.

  3. Rebuild the docker image, or run the main.py directly.

Screenshots

API Docs: /docs

Swagger

Todo

  • support ppocr v4
  • GPU mode
  • Image url recognition

License

PaddleOCRFastAPI is licensed under the MIT license. Refer to LICENSE for more information.