-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.jl
156 lines (140 loc) · 4.92 KB
/
train.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# Copyright (c) 2021 Idiap Research Institute, http://www.idiap.ch/
# Niccolò Antonello <[email protected]>
using ArgParse
s = ArgParseSettings()
@add_arg_table! s begin
"--conf"
help = "configuration setup"
arg_type = String
default = "1a"
end
parsed_args = parse_args(ARGS, s)
setup = parsed_args["conf"]
using HMMGradients, Flux, Zygote
using Random, Statistics, LinearAlgebra
using FiniteStateTransducers
using DSP, MFCC
using BSON, JLD2, LibSndFile, FileIO, UUIDs
include("WFSTs.jl")
include("Models.jl")
include("Utils.jl")
include("conf/$(setup)/feat_conf.jl")
include("conf/$(setup)/model_conf.jl")
# get transition matrix
lexicon, ilexicon = get_lexicon()
H, L = get_HL(lexicon)
a, A = get_aA(H)
Ns = size(A,1)
# init model
modely = get_convnet(Nf,Ns;
Nks=Nks,
Nhs=Nhs,
strides=strides,
dilations=dilations,
dropout=dropout,
fout=fout)
# load training data
feat_dir = get_feat_dir(setup)
data = load(joinpath(feat_dir,"train.jld2"))
uttID2feats, uttID2tr, uttID2text, uttID2phones =
data["uttID2feats"], data["uttID2tr"], data["uttID2text"], data["uttID2phones"]
# curriculum data (isolated words)
uttID2text_cur = filter(x->length(split(x.second))==1,uttID2text)
# load dev data
data = load(joinpath(feat_dir,"dev.jld2"))
uttID2feats_dev, uttID2tr_dev, uttID2text_dev, uttID2phones_dev =
data["uttID2feats"], data["uttID2tr"], data["uttID2text"], data["uttID2phones"]
# curriculum data (isolated words)
uttID2text_dev_cur = filter(x->length(split(x.second))==1,uttID2text_dev)
# dataloaders
Xs_cur = [uttID2feats[uttID] for uttID in keys(uttID2text_cur) ]
Ys_cur = [uttID2tr[uttID] for uttID in keys(uttID2text_cur) ]
Xs = [uttID2feats[uttID] for uttID in keys(uttID2feats) ]
Ys = [uttID2tr[uttID] for uttID in keys(uttID2tr) ]
Xs_test_cur = [uttID2feats_dev[uttID] for uttID in keys(uttID2text_dev_cur)]
Ys_test_cur = [uttID2phones_dev[uttID] for uttID in keys(uttID2text_dev_cur)]
Xs_test = [uttID2feats_dev[uttID] for uttID in keys(uttID2feats_dev)]
Ys_test = [uttID2phones_dev[uttID] for uttID in keys(uttID2feats_dev)]
N_cur = length(Xs_cur)
N = length(Xs)
N_test = length(Xs_test)
cur_data = Flux.Data.DataLoader((Xs_cur ,Ys_cur ), batchsize=Nb, shuffle=false)
train_data = Flux.Data.DataLoader((Xs ,Ys ), batchsize=Nb, shuffle=true)
test_data_cur = Flux.Data.DataLoader((Xs_test_cur,Ys_test_cur), batchsize=Nb)
test_data = Flux.Data.DataLoader((Xs_test,Ys_test), batchsize=Nb)
# define maximum likelihood function
function loss(Nt,t2tr,A,x,λ1)
y = modely(x)
yp = exp.(y)
f = nlogMLlog(Nt,t2tr,A,y) + λ1 * norm(yp,1)
return f
end
function test(modely,a,A,ippsym,test_data)
Flux.testmode!(modely)
Nw = 0
err = 0
for (x,ps) in test_data
x = feats_post.(x)
Nts = ceil.(Int,size.(x,1)/3)
xb = zeropad(x)
y = modely(xb)
for i in eachindex(Nts)
gamma = logposterior(Nts[i],a,A,view(y,:,:,i))
ps_dec = posterior2phones(ippsym,gamma)
Nw += length(ps[i])
err += levenshtein(ps[i],ps_dec)
end
end
per = err / Nw
Flux.trainmode!(modely)
return per
end
function train!(modely,a,A,H,opt,λ1,epochs,train_data,test_data)
Flux.trainmode!(modely)
N = length(train_data.data[1])
ps = Flux.params(modely)
best_per = Inf
best_modely = deepcopy(modely)
ippsym = get_iisym(H)
for e in 1:epochs
cost = 0
for (x,t2trs) in train_data
x = feats_post.(x)
Nts = length.(t2trs) .+ 1
xb = zeropad(x)
train_loss, back =
Zygote.pullback(() -> loss(Nts,t2trs,A,xb,λ1), ps)
if isnan(train_loss) | isinf(train_loss)
error("Nan/Inf cost function!!")
end
cost += train_loss
gs = back(one(Float32))
Flux.update!(opt, ps, gs)
end
per = test(modely,a,A,ippsym,test_data)
save_best = per <= best_per
if save_best
best_modely = deepcopy(modely)
best_per = per
BSON.@save "models/$setup/current_modely.bson" best_modely
end
println("epoch: $e cost: $(round(cost/N,digits=4)) PER: $(round(per*100,digits=3))" * (save_best ? " ⋆ " : ""))
end
Flux.testmode!(best_modely)
Flux.testmode!(modely)
return best_modely, modely
end
model_folder = joinpath("models","$setup")
mkpath(model_folder)
println("Using setup: $setup")
println(read("conf/$setup/model_conf.jl",String))
if curriculum_training
println("Curriculum training with $N_cur isolated words")
best_modely, modely = train!(modely,a,A,H,opt,λ1,epochs_cur,cur_data,test_data_cur)
BSON.@save joinpath(model_folder,"best_modely_curriculum.bson") best_modely
modely = deepcopy(best_modely)
end
println("Training with $N utterances")
best_modely, modely = train!(modely,a,A,H,opt,λ1,epochs,train_data,test_data)
BSON.@save joinpath(model_folder,"best_modely_final.bson") best_modely
BSON.@save joinpath(model_folder,"modely.bson") modely