-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathHMT-SiLLM.py
197 lines (180 loc) · 6.14 KB
/
HMT-SiLLM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import os
import sys
import pdb
import fire
import torch
import transformers
from peft import PeftModel
from transformers import GenerationConfig, LlamaForCausalLM, LlamaTokenizer, AutoTokenizer
from datasets import load_dataset
from utils.callbacks import Iteratorize, Stream
from utils.prompter import Prompter
import json
import time
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
try:
if torch.backends.mps.is_available():
device = "mps"
except: # noqa: E722
pass
def main(
load_8bit: bool = False,
base_model: str = "",
lora_weights: str = "tloen/alpaca-lora-7b",
prompt_template: str = "", # The prompt template to use, will default to alpaca.
data_path: str = "",
output_translation_path: str="",
Bottom: int=1,
Top: int=3,
):
base_model = base_model or os.environ.get("BASE_MODEL", "")
assert (
base_model
), "Please specify a --base_model, e.g. --base_model='huggyllama/llama-7b'"
prompter = Prompter(prompt_template)
tokenizer = AutoTokenizer.from_pretrained(base_model)
if device == "cuda":
model = LlamaForCausalLM.from_pretrained(
base_model,
load_in_8bit=load_8bit,
torch_dtype=torch.float16,
device_map="auto",
)
model = PeftModel.from_pretrained(
model,
lora_weights,
torch_dtype=torch.float16,
)
elif device == "mps":
model = LlamaForCausalLM.from_pretrained(
base_model,
device_map={"": device},
torch_dtype=torch.float16,
)
model = PeftModel.from_pretrained(
model,
lora_weights,
device_map={"": device},
torch_dtype=torch.float16,
)
else:
model = LlamaForCausalLM.from_pretrained(
base_model, device_map={"": device}, low_cpu_mem_usage=True
)
model = PeftModel.from_pretrained(
model,
lora_weights,
device_map={"": device},
)
# unwind broken decapoda-research config
model.config.pad_token_id = tokenizer.pad_token_id = 0 # unk
model.config.bos_token_id = 1
model.config.eos_token_id = 2
if not load_8bit:
model.half() # seems to fix bugs for some users.
model.eval()
if torch.__version__ >= "2" and sys.platform != "win32":
model = torch.compile(model)
def evaluate(
instruction,
input=None,
output=None,
suppress_tokens=None,
temperature=0.1,
top_p=0.75,
top_k=40,
num_beams=4,
max_new_tokens=128,
stream_output=False,
**kwargs,
):
prompt = prompter.generate_prompt(instruction, input, output)
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].to(device)
generation_config = GenerationConfig(
num_beams=num_beams,
suppress_tokens=suppress_tokens,
**kwargs,
)
# Without streaming
with torch.no_grad():
generation_output = model.generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=max_new_tokens,
)
s = generation_output.sequences[0]
output = tokenizer.decode(s)
return prompter.get_response(output), s.size(-1) - input_ids.size(-1)
def HMT_policy(
instruction,
input=None,
policy=[],
Lower=1,
Upper=3,
num_beams=1,
max_new_tokens=256
):
cur_target_str = ""
tokenized_input = input
i = 0
src_len = len(input.split())
tmp_max_new_tokens = 1
rw_seq = []
first_time = True
tran_tgt_seqLen = len(policy)
supress_tokens = [2]
total_tokens = 0
for i in range(tran_tgt_seqLen):
limited_policy = policy[i]
if policy[i] < Lower+i:
limited_policy = Lower+i
elif policy[i] > Upper+i:
limited_policy = Upper+i
limited_policy = min(limited_policy, src_len)
cut_input = ' '.join(input.split()[:limited_policy])
tmp_max_new_tokens = 3
if i >= (tran_tgt_seqLen - 1):
tmp_max_new_tokens = max_new_tokens
supress_tokens = None
cur_target_str, tmp_size = evaluate(instruction, cut_input, output=cur_target_str, suppress_tokens=None, num_beams=num_beams, max_new_tokens=tmp_max_new_tokens)
total_tokens += tmp_size
if i < (tran_tgt_seqLen - 1):
cur_target_str = ' '.join(cur_target_str.split()[:i+1])
rw_seq.append(limited_policy)
if cur_target_str.find('</s>') != -1:
break
else:
tmp_size = len(cur_target_str.split()) - i
rw_seq = rw_seq + [src_len] * tmp_size
rw_seq.append(src_len)
return rw_seq, cur_target_str, total_tokens
data = load_dataset("json", data_files=data_path)
test_data = data["train"]
output_text = []
j = 1
total_generate_tokens = 0
total_generate_words = 0
start_time = time.time()
for item_data in test_data:
print('sample' + str(j))
j += 1
tmp_result = HMT_policy(item_data["instruction"], item_data["input"], item_data['policy'], Bottom, Top, num_beams=1, max_new_tokens=1024)
total_generate_tokens += tmp_result[2]
total_generate_words += len(tmp_result[1].split(' '))
index = tmp_result[1].find('\n')
tmp_str = tmp_result[1]
if index!=-1:
tmp_str = tmp_result[1][:index]
output_text.append({'rw': tmp_result[0], 'translation': tmp_str})
end_time = time.time()
with open(output_translation_path, "w", encoding='utf-8') as fp:
json.dump(output_text, fp, indent=4, ensure_ascii=False)
print('Total time: '+str(end_time-start_time) + 'Total_words: '+str(total_generate_words))
if __name__ == "__main__":
fire.Fire(main)