Skip to content

Latest commit

 

History

History
1220 lines (1160 loc) · 23.6 KB

README.md

File metadata and controls

1220 lines (1160 loc) · 23.6 KB

Build Status

ICES Logo

sfdSAR

The goal of sfdSAR is to make it easy to follow the procedure of calculating swept area ratio of an area of seabed by a fishing gear.

Installation

You can install the sfdSAR using

install.packages("sfdSAR", repos = "https://ices-tools-prod.r-universe.dev")

Usage

For a summary of the package:

library(sfdSAR)
?sfdSAR

References

ICES 2015. Report of the Working Group on Spatial Fisheries Data (WGSFD), 8-12 June 2015, ICES Headquarters, Copenhagen, Denmark. ICES CM 2015/SSGEPI:18. 150pp

ICES 2016. Interim Report of the Working Group on Spatial Fisheries Data (WGSFD), 17-20 May 2016, Brest, France. ICES CM 2016/SSGEPI:18. 244 pp

Eigaard OR, Bastardie F, Breen M, et al. (2016) Estimating seabed pressure from demersal trawls, seines, and dredges based on gear design and dimensions. ICES Journal of Marine Science, 73:27-43

Church N.J., Carter A.J., Tobin D., Edwards D., Eassom A., Cameron A., Johnson G.E., Robson, L.M. & Webb K.E. (2016) JNCC Recommended Pressure Mapping Methodology 1. Abrasion: Methods paper for creating a geo-data layer for the pressure ‘Physical Damage (Reversible Change) - Penetration and/or disturbance of the substrate below the surface of the seabed, including abrasion’. JNCC report No. 515, JNCC, Peterborough

Development

sfdSAR is developed openly on GitHub.

Feel free to open an issue there if you encounter problems or have suggestions for future versions.

Example

The functions in this package are intended for one purpose: to compute the swept area ratio (SAR) and the subsurface SAR of a fishing gear, which can then be summarised over years and gear groupings.

Swept Area Ratio (SAR) is computed using the algorithm described below. The main steps in the data processing are

  1. Determine the gear width of the VMS record according to:
    • Where average gear widths are supplied these are used.
    • For VMS records with missing gear widths but that have supplied average vessel characteristics (i.e. average overall vessel length or average KW engine power): use the model described in (Eigaard et al., 2016) to provide an estimate of gear width
    • For VMS records with missing gear widths and missing vessel characteristics use a fill-in value provided by ICES (2015) based on a review by the JNCC or on the BENTHIS survey (Eigaard et al. 2016).
  2. Estimate swept area based on gear type, fishing hours (hours), fishing speed (speed) and gear width (width) for each record (ICES, 2016, p 69), note here speed is in knots and requires to be converted to km per hour:
    • Trawl : hours x width x speed x 1.82
    • Danish seine : hours / 2.591234 x (width2) / (4 π)
    • Scottish seine : hours / 1.9125 x (1.5 x width2) / (4 π)
  3. Accumulate across gears for each year to produce annual totals of SA by c-square and gear category, and finally average over years within gear category and c-square.
  4. Calculate SAR values by scaling by the area of the c-squares

The code below shows how the sfdSAR functions can be used to calculate swept area ratio (SAR)

In the following examples the dplyr package is used to simplify the data processing and a made up vms toy vms dataset (test_vms) will be used

library(dplyr)
library(sfdSAR)
## load sample vms data
data(test_vms)

1. Determine gear widths

The calculation of gear with is done using the data in the benthis model parameters table:

library(icesVMS)
gear_widths <- get_benthis_parameters()
#> GETing ... https://taf.ices.dk/vms/api/gearwidths
#> no token used
#> OK (HTTP 200).
kableExtra::kable(gear_widths)
id benthisMet avKw avLoa avFspeed subsurfaceProp gearWidth firstFactor secondFactor gearModel gearCoefficient contactModel
1 OT_SPF 883.8421 34.38526 2.9 2.8 0.1015789 0.9652 68.3890 linear avg_oal trawl_contact
2 SDN_DMF 167.6765 18.91915 0 0 6.5366439 1948.8347 0.2363 power avg_kw danish_seine_contact
3 OT_DMF 441.6667 19.8 3.064286 7.8 0.1054698 9.6054 0.4337 power avg_kw trawl_contact
4 OT_MIX_DMF_BEN 691.0217 24.36896 2.911111 8.6 0.1563055 3.2141 77.9812 linear avg_oal trawl_contact
5 SSC_DMF 481.795 23.1175 0 5 6.4542120 4461.2700 0.1176 power avg_oal scottish_seine_contact
6 OT_MIX 400.6089 20.13774 2.788636 14.7 0.0613659 10.6608 0.2921 power avg_kw trawl_contact
7 OT_MIX_DMF_PEL 690.3574 23.745 3.410385 22 0.0762053 6.6371 0.7706 power avg_oal trawl_contact
8 OT_MIX_CRU_DMF 473.097 19.89515 2.629 22.9 0.1139591 3.9273 35.8254 linear avg_oal trawl_contact
9 OT_MIX_CRU 681 21.685 3.008889 29.2 0.1051172 37.5272 0.1490 power avg_kw trawl_contact
10 OT_CRU 345.5205 18.67739 2.47963 32.1 0.0789228 5.1039 0.4690 power avg_kw trawl_contact
11 TBB_CRU 210.625 20.765 2.975 52.2 0.0171507 1.4812 0.4578 power avg_kw trawl_contact
12 TBB_DMF 822.1667 33.8866 5.230851 100 0.0202760 0.6601 0.5078 power avg_kw trawl_contact
13 TBB_MOL 107.1773 10.14545 2.428571 100 0.0049306 0.9530 0.7094 power avg_oal trawl_contact
14 DRB_MOL 382.4375 24.59848 2.5 100 0.0169653 0.3142 1.2454 power avg_oal trawl_contact

This table comes from Eigaard et al. (2016), with additions from ICES (2015). And contains, for each benthis gear group, the proportion of the gear contact that also affects the subsurface, the estimated average gear width, and the coeffients and covariates of the surface contact model which relates the gear width, properties of the vessel (kw or overall length) to bottom contact.

In order to use this data a lookup table is required linking Metier level 6 codes to the benthis gear groupings listed above. The lookup table is given in the get_metier_lookup() function from the icesVMS package and contains other gear groupings used in ICES outputs and was initially developed by ICES (2015).

metier_lookup <- get_metier_lookup()
#> GETing ... https://taf.ices.dk/vms/api/MetierLookup
#> no token used
#> OK (HTTP 200).
kableExtra::kable(head(metier_lookup))
id leMetLevel6 fishingHours benthisMetiers benthisMetiers2016Wrong metierLevel5 metierLevel4 jnccGrouping fishingCategory description fishingCategoryFo ecomarClassification
1 FPO_FWS_110-156_0_0 NA NA NA FPO_FWS FPO NA Static Pot Static NA
2 FPO_FWS_31-49_0_0 NA NA NA FPO_FWS FPO NA Static Pot Static NA
3 FPO_FWS\_\>0_0_0 NA NA NA FPO_FWS FPO NA Static Pot Static Pots_and_traps
4 FPO_MCF_0-0_0_0 NA NA NA FPO_MCF FPO NA Static Pot Static NA
5 FPO_MOL_0-0_0_0 NA NA NA FPO_MOL FPO NA Static Pot Static NA
6 FPO_MOL_0_0_0 NA NA NA FPO_MOL FPO NA Static Pot Static Pots_and_traps

Linking the gearwidths and contact model information is done with the following two lines

# join widths and lookup
aux_lookup <-
  gear_widths %>%
  right_join(metier_lookup, by = c("benthisMet" = "benthisMetiers"))

# add aux data to vms
vms <-
  aux_lookup %>%
  right_join(test_vms, by = c("leMetLevel6" = "LE_MET_level6"))

and the gear width model is applied using the helper function predict_gear_width

# calculate the gear width model
vms$gearWidth_model <-
  predict_gear_width(vms$gearModel, vms$gearCoefficient, vms)

In general, if gearwdth is available, it is used. If average overall vessel length (oal) or average vessel power (kW) is available then the gear width model is used. Finally if none of these are avaiable an average gear width is applied. The following code implements this

# do the fillin for gear width:
# select provided average gear width, then modelled gear with, then benthis
# average if no kw or aol supplied
vms$gearWidth_filled <-
  with(vms,
    ifelse(!is.na(avg_gearWidth), avg_gearWidth / 1000,
      ifelse(!is.na(gearWidth_model), gearWidth_model / 1000,
        gearWidth)
    ))

Predicting surface contact

finaly, surface contact is computed using the appropriate surface contact model, given by the contact_model feild, defined as:

sapply(unique(gear_widths$contactModel), function(x) body(get(x)))
#> $trawl_contact
#> {
#>     fishing_hours * gear_width * fishing_speed * 1.852
#> }
#> 
#> $danish_seine_contact
#> {
#>     fishing_hours/2.591234 * gear_width^2/pi/4
#> }
#> 
#> $scottish_seine_contact
#> {
#>     fishing_hours/1.9125 * gear_width^2/pi/4 * 1.5
#> }

The helper function predict_surface_contact computes the surface contact (usage shown below). The feild subsurface_prop which has come from the gear_width dataset can be used to compute subsurface contact from the surface contact.

# calculate surface contact
vms$surface <-
  predict_surface_contact(vms$contactModel,
                          vms$fishingHours,
                          vms$gearWidth_filled,
                          vms$ICES_avg_fishing_speed)
# calculate subsurface contact
vms$subsurface <- vms$surface * as.numeric(vms$subsurfaceProp) * .01

Summarising accross months etc.

Normally it is required to summarise the surface quantities, which can be done like this

# compute summaries of swept area over groups
sa <-
  vms %>%
    mutate(
      mw_fishinghours = kw_fishinghours / 1000
    ) %>%
    group_by(year, c_square, fishingCategoryFo) %>%
    summarise(
      mw_fishinghours = sum(mw_fishinghours, na.rm = TRUE),
      subsurface = sum(subsurface, na.rm = TRUE),
      surface = sum(surface, na.rm = TRUE)
    ) %>%
  ungroup %>%
  mutate(
    lat = csquare_lat(c_square),
    lon = csquare_lon(c_square)
  )
#> `summarise()` has grouped output by 'year', 'c_square'. You can override using the `.groups` argument.
sa
#> # A tibble: 3 x 8
#>    year c_square       fishingCategoryFo mw_fishinghours subsurface surface   lat   lon
#>   <dbl> <chr>          <chr>                       <dbl>      <dbl>   <dbl> <dbl> <dbl>
#> 1  2020 7400:361:206:4 Otter                      15.7            0       0  46.1 -1.68
#> 2  2020 7400:361:206:4 Static                     10.8            0       0  46.1 -1.68
#> 3  2020 7400:361:206:4 <NA>                        0.903          0       0  46.1 -1.68

Computing Swept Area Ratio (SAR)

In the code below, SAR is calculated for each year, then averaged over years, resulting in a dataset of averarage SAR per c_square. Note that, because grouping is taking place over c_square the summation in the first group_by section is equivalent to sum(surface) / area. The second grouping section computes averages for each c_square over all years in the dataset.

# compute swept area ratio per year and c_square then average over years
sar <-
  sa %>%
    mutate(
      area = csquare_area(c_square)
    ) %>%
    group_by(c_square, year) %>%
      summarise(
        surface_sar = sum(surface / area, na.rm = TRUE),
        subsurface_sar = sum(subsurface / area, na.rm = TRUE)
      ) %>%
    ungroup() %>%
    group_by(c_square) %>%
    summarise(
      surface_sar = mean(surface_sar, na.rm = TRUE),
      subsurface_sar = mean(subsurface_sar, na.rm = TRUE)
    )
#> `summarise()` has grouped output by 'c_square'. You can override using the `.groups` argument.
sar
#> # A tibble: 1 x 3
#>   c_square       surface_sar subsurface_sar
#>   <chr>                <dbl>          <dbl>
#> 1 7400:361:206:4           0              0

All in one

The steps described above are combined into one code block for convienience. This code can be applied to a larger dataset to covering a range of years, fishing gears and c_squares.

# join widths and lookup
aux_lookup <-
  gear_widths %>%
  right_join(metier_lookup, by = c("benthisMet" = "benthisMetiers"))

# add aux data to vms
vms <-
  aux_lookup %>%
  right_join(test_vms, by = c("leMetLevel6" = "LE_MET_level6"))
# calculate the gear width model
vms$gearWidth_model <-
  predict_gear_width(vms$gearModel, vms$gearCoefficient, vms)
# do the fillin for gear width:
# select provided average gear width, then modelled gear with, then benthis
# average if no kw or aol supplied
vms$gearWidth_filled <-
  with(vms,
    ifelse(!is.na(avg_gearWidth), avg_gearWidth / 1000,
      ifelse(!is.na(gearWidth_model), gearWidth_model / 1000,
        gearWidth)
    ))

# calculate surface contact
vms$surface <-
  predict_surface_contact(vms$contactModel,
                          vms$fishingHours,
                          vms$gearWidth_filled,
                          vms$ICES_avg_fishing_speed)
# calculate subsurface contact
vms$subsurface <- vms$surface * as.numeric(vms$subsurfaceProp) * .01

# compute summaries of swept area over groups
sa <-
  vms %>%
    mutate(
      mw_fishinghours = kw_fishinghours / 1000
    ) %>%
    group_by(year, c_square, fishingCategoryFo) %>%
    summarise(
      mw_fishinghours = sum(mw_fishinghours, na.rm = TRUE),
      subsurface = sum(subsurface, na.rm = TRUE),
      surface = sum(surface, na.rm = TRUE)
    ) %>%
  ungroup %>%
  mutate(
    lat = csquare_lat(c_square),
    lon = csquare_lon(c_square)
  )
#> `summarise()` has grouped output by 'year', 'c_square'. You can override using the `.groups` argument.

# compute swept area ratio per year and c_square then average over years
sar <-
  sa %>%
    mutate(
      area = csquare_area(c_square)
    ) %>%
    group_by(c_square, year) %>%
      summarise(
        surface_sar = sum(surface / area, na.rm = TRUE),
        subsurface_sar = sum(subsurface / area, na.rm = TRUE)
      ) %>%
    ungroup() %>%
    group_by(c_square) %>%
    summarise(
      surface_sar = mean(surface_sar, na.rm = TRUE),
      subsurface_sar = mean(subsurface_sar, na.rm = TRUE)
    )
#> `summarise()` has grouped output by 'c_square'. You can override using the `.groups` argument.
sar
#> # A tibble: 1 x 3
#>   c_square       surface_sar subsurface_sar
#>   <chr>                <dbl>          <dbl>
#> 1 7400:361:206:4           0              0