From e21f985a79e3178fb0cdc9c9a95a6cd08515c96e Mon Sep 17 00:00:00 2001 From: "pre-commit-ci[bot]" <66853113+pre-commit-ci[bot]@users.noreply.github.com> Date: Tue, 17 Dec 2024 17:20:41 -0500 Subject: [PATCH 1/6] [pre-commit.ci] pre-commit autoupdate (#4473) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit updates: - [github.com/astral-sh/ruff-pre-commit: v0.8.2 → v0.8.3](https://github.com/astral-sh/ruff-pre-commit/compare/v0.8.2...v0.8.3) - [github.com/pre-commit/mirrors-clang-format: v19.1.4 → v19.1.5](https://github.com/pre-commit/mirrors-clang-format/compare/v19.1.4...v19.1.5) Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> --- .pre-commit-config.yaml | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml index 38f5abf616..9058decc21 100644 --- a/.pre-commit-config.yaml +++ b/.pre-commit-config.yaml @@ -29,7 +29,7 @@ repos: exclude: ^source/3rdparty - repo: https://github.com/astral-sh/ruff-pre-commit # Ruff version. - rev: v0.8.2 + rev: v0.8.3 hooks: - id: ruff args: ["--fix"] @@ -60,7 +60,7 @@ repos: - id: blacken-docs # C++ - repo: https://github.com/pre-commit/mirrors-clang-format - rev: v19.1.4 + rev: v19.1.5 hooks: - id: clang-format exclude: ^(source/3rdparty|source/lib/src/gpu/cudart/.+\.inc|.+\.ipynb$) From e8167ce562bf158135567b137c4afa0ba0492dba Mon Sep 17 00:00:00 2001 From: HydrogenSulfate <490868991@qq.com> Date: Wed, 18 Dec 2024 06:29:35 +0800 Subject: [PATCH 2/6] pd: support dpa1 (#4414) Summary of this PR: 1. upload DPA-1 related code 2. merge much develop code 3. add all eager composite operators except `softmax_grad`, `p_norm_grad`, `split_grad`, and `concat_grad` to the composite operator blacklist() to significantly improve model execution speed (reducing the time taken from 100% more than PyTorch to about 10% to 15% more). related PR: https://github.com/lanpa/tensorboardX/pull/728 ### Training curve: ![training_curves_comparison_eager_opt](https://github.com/user-attachments/assets/3b71fc99-5abf-4353-a61a-38737d3c7f2c) ### Accuracy test(left: paddle, right: torch): ![image](https://github.com/user-attachments/assets/a42b4bfd-c0f8-4eb8-85eb-ff1adf981dbb) Ralated optimization of Paddle framework: - [x] https://github.com/PaddlePaddle/Paddle/pull/69349 - [x] https://github.com/PaddlePaddle/Paddle/pull/69333 - [x] https://github.com/PaddlePaddle/Paddle/pull/69479 - [x] https://github.com/PaddlePaddle/Paddle/pull/69515 - [x] https://github.com/PaddlePaddle/Paddle/pull/69487 - [x] https://github.com/PaddlePaddle/Paddle/pull/69661 - [x] https://github.com/PaddlePaddle/Paddle/pull/69660 - [x] https://github.com/PaddlePaddle/Paddle/pull/69596 - [x] https://github.com/PaddlePaddle/Paddle/pull/69556 ## Summary by CodeRabbit ## Release Notes - **New Features** - Introduced several new classes for molecular descriptors, including `DescrptDPA1`, `DescrptBlockSeAtten`, and `LayerNorm`, enhancing the modeling capabilities for molecular simulations. - Added new JSON configuration files for model parameters and multitask models related to water simulations. - Implemented new test classes for validating the functionality of the `DPAtomicModel` and various descriptor classes. - Added new test classes for evaluating denoising models, including `TestDenoiseModelDPA1` and `TestDenoiseModelDPA2`. - Enhanced the `ModelWrapper` class to clarify the handling of model parameters and state management. - **Bug Fixes** - Improved internal logic for handling model state saving and loading, ensuring consistency in outputs. - **Documentation** - Enhanced type hints and return annotations across various classes and methods for better clarity. - **Tests** - Expanded the testing framework with new test cases for denoising models and descriptor functionalities, ensuring robust validation of features. - Activated previously skipped tests for energy models, improving test coverage. - Enhanced multitask training tests with new configuration handling and test classes. --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> --- deepmd/pd/entrypoints/main.py | 18 +- deepmd/pd/loss/ener.py | 6 +- .../pd/model/atomic_model/dp_atomic_model.py | 38 +- deepmd/pd/model/descriptor/__init__.py | 6 + deepmd/pd/model/descriptor/dpa1.py | 689 +++++++++++ deepmd/pd/model/descriptor/env_mat.py | 9 +- deepmd/pd/model/descriptor/se_a.py | 147 ++- deepmd/pd/model/descriptor/se_atten.py | 1073 +++++++++++++++++ deepmd/pd/model/model/ener_model.py | 17 +- deepmd/pd/model/model/make_model.py | 18 +- deepmd/pd/model/network/layernorm.py | 165 +++ deepmd/pd/model/network/network.py | 25 +- deepmd/pd/model/task/fitting.py | 75 +- deepmd/pd/train/training.py | 109 +- deepmd/pd/train/wrapper.py | 16 +- deepmd/pd/utils/dataloader.py | 57 +- deepmd/pd/utils/decomp.py | 120 +- deepmd/pd/utils/env.py | 64 +- deepmd/pd/utils/exclude_mask.py | 20 +- deepmd/pd/utils/nlist.py | 28 +- deepmd/pd/utils/region.py | 13 +- deepmd/pd/utils/utils.py | 19 + .../tests/consistent/descriptor/test_dpa1.py | 44 + source/tests/consistent/model/test_dpa1.py | 28 + source/tests/pd/common.py | 8 + source/tests/pd/model/models/dpa1.json | 36 + source/tests/pd/model/models/dpa1.pd | Bin 0 -> 11329 bytes source/tests/pd/model/models/dpa2_tebd.pd | Bin 0 -> 537 bytes .../pd/model/test_atomic_model_atomic_stat.py | 431 +++++++ .../pd/model/test_atomic_model_global_stat.py | 510 ++++++++ source/tests/pd/model/test_autodiff.py | 2 - source/tests/pd/model/test_descriptor.py | 3 +- source/tests/pd/model/test_descriptor_dpa1.py | 387 ++++++ source/tests/pd/model/test_dpa1.py | 164 +++ source/tests/pd/model/test_env_mat.py | 6 +- source/tests/pd/model/test_forward_lower.py | 3 +- source/tests/pd/model/test_null_input.py | 8 + source/tests/pd/model/test_permutation.py | 23 +- .../pd/model/test_permutation_denoise.py | 109 ++ source/tests/pd/model/test_rot.py | 1 - source/tests/pd/model/test_rot_denoise.py | 124 ++ source/tests/pd/model/test_saveload_dpa1.py | 144 +++ source/tests/pd/model/test_smooth.py | 36 + source/tests/pd/model/test_trans.py | 1 - source/tests/pd/model/test_trans_denoise.py | 95 ++ .../pd/model/water/multitask_sharefit.json | 134 ++ source/tests/pd/test_decomp.py | 61 - source/tests/pd/test_finetune.py | 1 - source/tests/pd/test_multitask.py | 58 +- source/tests/pd/test_training.py | 33 +- 50 files changed, 4740 insertions(+), 442 deletions(-) create mode 100644 deepmd/pd/model/descriptor/dpa1.py create mode 100644 deepmd/pd/model/descriptor/se_atten.py create mode 100644 deepmd/pd/model/network/layernorm.py create mode 100644 source/tests/pd/model/models/dpa1.json create mode 100644 source/tests/pd/model/models/dpa1.pd create mode 100644 source/tests/pd/model/models/dpa2_tebd.pd create mode 100644 source/tests/pd/model/test_atomic_model_atomic_stat.py create mode 100644 source/tests/pd/model/test_atomic_model_global_stat.py create mode 100644 source/tests/pd/model/test_descriptor_dpa1.py create mode 100644 source/tests/pd/model/test_dpa1.py create mode 100644 source/tests/pd/model/test_permutation_denoise.py create mode 100644 source/tests/pd/model/test_rot_denoise.py create mode 100644 source/tests/pd/model/test_saveload_dpa1.py create mode 100644 source/tests/pd/model/test_trans_denoise.py create mode 100644 source/tests/pd/model/water/multitask_sharefit.json diff --git a/deepmd/pd/entrypoints/main.py b/deepmd/pd/entrypoints/main.py index 19653d6ea7..3fa66312e7 100644 --- a/deepmd/pd/entrypoints/main.py +++ b/deepmd/pd/entrypoints/main.py @@ -230,7 +230,7 @@ def train( use_pretrain_script: bool = False, force_load: bool = False, output: str = "out.json", -): +) -> None: log.info("Configuration path: %s", input_file) SummaryPrinter()() with open(input_file) as fin: @@ -321,10 +321,18 @@ def train( # save min_nbor_dist if min_nbor_dist is not None: if not multi_task: - trainer.model.min_nbor_dist = min_nbor_dist + trainer.model.min_nbor_dist = paddle.to_tensor( + min_nbor_dist, + dtype=paddle.float64, + place=DEVICE, + ) else: for model_item in min_nbor_dist: - trainer.model[model_item].min_nbor_dist = min_nbor_dist[model_item] + trainer.model[model_item].min_nbor_dist = paddle.to_tensor( + min_nbor_dist[model_item], + dtype=paddle.float64, + place=DEVICE, + ) trainer.run() @@ -332,7 +340,7 @@ def freeze( model: str, output: str = "frozen_model.json", head: Optional[str] = None, -): +) -> None: paddle.set_flags( { "FLAGS_save_cf_stack_op": 1, @@ -383,7 +391,7 @@ def change_bias( numb_batch: int = 0, model_branch: Optional[str] = None, output: Optional[str] = None, -): +) -> None: if input_file.endswith(".pd"): old_state_dict = paddle.load(input_file) model_state_dict = copy.deepcopy(old_state_dict.get("model", old_state_dict)) diff --git a/deepmd/pd/loss/ener.py b/deepmd/pd/loss/ener.py index 7c5d848b45..73ad53601a 100644 --- a/deepmd/pd/loss/ener.py +++ b/deepmd/pd/loss/ener.py @@ -10,7 +10,6 @@ TaskLoss, ) from deepmd.pd.utils import ( - decomp, env, ) from deepmd.pd.utils.env import ( @@ -224,10 +223,7 @@ def forward(self, input_dict, model, label, natoms, learning_rate, mae=False): if self.relative_f is not None: force_label_3 = force_label.reshape([-1, 3]) - # norm_f = force_label_3.norm(axis=1, keepdim=True) + self.relative_f - norm_f = ( - decomp.norm(force_label_3, axis=1, keepdim=True) + self.relative_f - ) + norm_f = force_label_3.norm(axis=1, keepdim=True) + self.relative_f diff_f_3 = diff_f.reshape([-1, 3]) diff_f_3 = diff_f_3 / norm_f diff_f = diff_f_3.reshape([-1]) diff --git a/deepmd/pd/model/atomic_model/dp_atomic_model.py b/deepmd/pd/model/atomic_model/dp_atomic_model.py index 25a0f89d77..1089b93a68 100644 --- a/deepmd/pd/model/atomic_model/dp_atomic_model.py +++ b/deepmd/pd/model/atomic_model/dp_atomic_model.py @@ -1,5 +1,4 @@ # SPDX-License-Identifier: LGPL-3.0-or-later -import copy import functools import logging from typing import ( @@ -52,7 +51,7 @@ def __init__( fitting, type_map: list[str], **kwargs, - ): + ) -> None: super().__init__(type_map, **kwargs) ntypes = len(type_map) self.type_map = type_map @@ -201,7 +200,7 @@ def serialize(self) -> dict: @classmethod def deserialize(cls, data) -> "DPAtomicModel": - data = copy.deepcopy(data) + data = data.copy() check_version_compatibility(data.pop("@version", 1), 2, 1) data.pop("@class", None) data.pop("type", None) @@ -212,6 +211,37 @@ def deserialize(cls, data) -> "DPAtomicModel": obj = super().deserialize(data) return obj + def enable_compression( + self, + min_nbor_dist: float, + table_extrapolate: float = 5, + table_stride_1: float = 0.01, + table_stride_2: float = 0.1, + check_frequency: int = -1, + ) -> None: + """Call descriptor enable_compression(). + + Parameters + ---------- + min_nbor_dist + The nearest distance between atoms + table_extrapolate + The scale of model extrapolation + table_stride_1 + The uniform stride of the first table + table_stride_2 + The uniform stride of the second table + check_frequency + The overflow check frequency + """ + self.descriptor.enable_compression( + min_nbor_dist, + table_extrapolate, + table_stride_1, + table_stride_2, + check_frequency, + ) + def forward_atomic( self, extended_coord, @@ -278,7 +308,7 @@ def compute_or_load_stat( self, sampled_func, stat_file_path: Optional[DPPath] = None, - ): + ) -> None: """ Compute or load the statistics parameters of the model, such as mean and standard deviation of descriptors or the energy bias of the fitting net. diff --git a/deepmd/pd/model/descriptor/__init__.py b/deepmd/pd/model/descriptor/__init__.py index 654643959b..7eaa0df85b 100644 --- a/deepmd/pd/model/descriptor/__init__.py +++ b/deepmd/pd/model/descriptor/__init__.py @@ -5,6 +5,10 @@ from .descriptor import ( DescriptorBlock, ) +from .dpa1 import ( + DescrptBlockSeAtten, + DescrptDPA1, +) from .env_mat import ( prod_env_mat, ) @@ -17,6 +21,8 @@ "BaseDescriptor", "DescriptorBlock", "DescrptBlockSeA", + "DescrptBlockSeAtten", + "DescrptDPA1", "DescrptSeA", "prod_env_mat", ] diff --git a/deepmd/pd/model/descriptor/dpa1.py b/deepmd/pd/model/descriptor/dpa1.py new file mode 100644 index 0000000000..f3f1ea26d6 --- /dev/null +++ b/deepmd/pd/model/descriptor/dpa1.py @@ -0,0 +1,689 @@ +# SPDX-License-Identifier: LGPL-3.0-or-later +from typing import ( + Callable, + Optional, + Union, +) + +import paddle + +from deepmd.dpmodel.utils import EnvMat as DPEnvMat +from deepmd.dpmodel.utils.seed import ( + child_seed, +) +from deepmd.pd.model.network.mlp import ( + NetworkCollection, +) +from deepmd.pd.model.network.network import ( + TypeEmbedNet, + TypeEmbedNetConsistent, +) +from deepmd.pd.utils import ( + env, +) +from deepmd.pd.utils.env import ( + PRECISION_DICT, + RESERVED_PRECISON_DICT, +) +from deepmd.pd.utils.update_sel import ( + UpdateSel, +) +from deepmd.utils.data_system import ( + DeepmdDataSystem, +) +from deepmd.utils.finetune import ( + get_index_between_two_maps, + map_pair_exclude_types, +) +from deepmd.utils.path import ( + DPPath, +) +from deepmd.utils.version import ( + check_version_compatibility, +) + +from .base_descriptor import ( + BaseDescriptor, +) +from .descriptor import ( + extend_descrpt_stat, +) +from .se_atten import ( + DescrptBlockSeAtten, + NeighborGatedAttention, +) + + +@BaseDescriptor.register("dpa1") +@BaseDescriptor.register("se_atten") +class DescrptDPA1(BaseDescriptor, paddle.nn.Layer): + r"""Attention-based descriptor which is proposed in the pretrainable DPA-1[1] model. + + This descriptor, :math:`\mathcal{D}^i \in \mathbb{R}^{M \times M_{<}}`, is given by + + .. math:: + \mathcal{D}^i = \frac{1}{N_c^2}(\hat{\mathcal{G}}^i)^T \mathcal{R}^i (\mathcal{R}^i)^T \hat{\mathcal{G}}^i_<, + + where :math:`\hat{\mathcal{G}}^i` represents the embedding matrix:math:`\mathcal{G}^i` + after additional self-attention mechanism and :math:`\mathcal{R}^i` is defined by the full case in the se_e2_a descriptor. + Note that we obtain :math:`\mathcal{G}^i` using the type embedding method by default in this descriptor. + + To perform the self-attention mechanism, the queries :math:`\mathcal{Q}^{i,l} \in \mathbb{R}^{N_c\times d_k}`, + keys :math:`\mathcal{K}^{i,l} \in \mathbb{R}^{N_c\times d_k}`, + and values :math:`\mathcal{V}^{i,l} \in \mathbb{R}^{N_c\times d_v}` are first obtained: + + .. math:: + \left(\mathcal{Q}^{i,l}\right)_{j}=Q_{l}\left(\left(\mathcal{G}^{i,l-1}\right)_{j}\right), + + .. math:: + \left(\mathcal{K}^{i,l}\right)_{j}=K_{l}\left(\left(\mathcal{G}^{i,l-1}\right)_{j}\right), + + .. math:: + \left(\mathcal{V}^{i,l}\right)_{j}=V_{l}\left(\left(\mathcal{G}^{i,l-1}\right)_{j}\right), + + where :math:`Q_{l}`, :math:`K_{l}`, :math:`V_{l}` represent three trainable linear transformations + that output the queries and keys of dimension :math:`d_k` and values of dimension :math:`d_v`, and :math:`l` + is the index of the attention layer. + The input embedding matrix to the attention layers, denoted by :math:`\mathcal{G}^{i,0}`, + is chosen as the two-body embedding matrix. + + Then the scaled dot-product attention method is adopted: + + .. math:: + A(\mathcal{Q}^{i,l}, \mathcal{K}^{i,l}, \mathcal{V}^{i,l}, \mathcal{R}^{i,l})=\varphi\left(\mathcal{Q}^{i,l}, \mathcal{K}^{i,l},\mathcal{R}^{i,l}\right)\mathcal{V}^{i,l}, + + where :math:`\varphi\left(\mathcal{Q}^{i,l}, \mathcal{K}^{i,l},\mathcal{R}^{i,l}\right) \in \mathbb{R}^{N_c\times N_c}` is attention weights. + In the original attention method, + one typically has :math:`\varphi\left(\mathcal{Q}^{i,l}, \mathcal{K}^{i,l}\right)=\mathrm{softmax}\left(\frac{\mathcal{Q}^{i,l} (\mathcal{K}^{i,l})^{T}}{\sqrt{d_{k}}}\right)`, + with :math:`\sqrt{d_{k}}` being the normalization temperature. + This is slightly modified to incorporate the angular information: + + .. math:: + \varphi\left(\mathcal{Q}^{i,l}, \mathcal{K}^{i,l},\mathcal{R}^{i,l}\right) = \mathrm{softmax}\left(\frac{\mathcal{Q}^{i,l} (\mathcal{K}^{i,l})^{T}}{\sqrt{d_{k}}}\right) \odot \hat{\mathcal{R}}^{i}(\hat{\mathcal{R}}^{i})^{T}, + + where :math:`\hat{\mathcal{R}}^{i} \in \mathbb{R}^{N_c\times 3}` denotes normalized relative coordinates, + :math:`\hat{\mathcal{R}}^{i}_{j} = \frac{\boldsymbol{r}_{ij}}{\lVert \boldsymbol{r}_{ij} \lVert}` + and :math:`\odot` means element-wise multiplication. + + Then layer normalization is added in a residual way to finally obtain the self-attention local embedding matrix + :math:`\hat{\mathcal{G}}^{i} = \mathcal{G}^{i,L_a}` after :math:`L_a` attention layers:[^1] + + .. math:: + \mathcal{G}^{i,l} = \mathcal{G}^{i,l-1} + \mathrm{LayerNorm}(A(\mathcal{Q}^{i,l}, \mathcal{K}^{i,l}, \mathcal{V}^{i,l}, \mathcal{R}^{i,l})). + + Parameters + ---------- + rcut: float + The cut-off radius :math:`r_c` + rcut_smth: float + From where the environment matrix should be smoothed :math:`r_s` + sel : list[int], int + list[int]: sel[i] specifies the maxmum number of type i atoms in the cut-off radius + int: the total maxmum number of atoms in the cut-off radius + ntypes : int + Number of element types + neuron : list[int] + Number of neurons in each hidden layers of the embedding net :math:`\mathcal{N}` + axis_neuron: int + Number of the axis neuron :math:`M_2` (number of columns of the sub-matrix of the embedding matrix) + tebd_dim: int + Dimension of the type embedding + tebd_input_mode: str + The input mode of the type embedding. Supported modes are ["concat", "strip"]. + - "concat": Concatenate the type embedding with the smoothed radial information as the union input for the embedding network. + - "strip": Use a separated embedding network for the type embedding and combine the output with the radial embedding network output. + resnet_dt: bool + Time-step `dt` in the resnet construction: + y = x + dt * \phi (Wx + b) + trainable: bool + If the weights of this descriptors are trainable. + trainable_ln: bool + Whether to use trainable shift and scale weights in layer normalization. + ln_eps: float, Optional + The epsilon value for layer normalization. + type_one_side: bool + If 'False', type embeddings of both neighbor and central atoms are considered. + If 'True', only type embeddings of neighbor atoms are considered. + Default is 'False'. + attn: int + Hidden dimension of the attention vectors + attn_layer: int + Number of attention layers + attn_dotr: bool + If dot the angular gate to the attention weights + attn_mask: bool + (Only support False to keep consistent with other backend references.) + (Not used in this version. True option is not implemented.) + If mask the diagonal of attention weights + exclude_types : list[list[int]] + The excluded pairs of types which have no interaction with each other. + For example, `[[0, 1]]` means no interaction between type 0 and type 1. + env_protection: float + Protection parameter to prevent division by zero errors during environment matrix calculations. + set_davg_zero: bool + Set the shift of embedding net input to zero. + activation_function: str + The activation function in the embedding net. Supported options are |ACTIVATION_FN| + precision: str + The precision of the embedding net parameters. Supported options are |PRECISION| + scaling_factor: float + The scaling factor of normalization in calculations of attention weights. + If `temperature` is None, the scaling of attention weights is (N_dim * scaling_factor)**0.5 + normalize: bool + Whether to normalize the hidden vectors in attention weights calculation. + temperature: float + If not None, the scaling of attention weights is `temperature` itself. + smooth_type_embedding: bool + Whether to use smooth process in attention weights calculation. + concat_output_tebd: bool + Whether to concat type embedding at the output of the descriptor. + stripped_type_embedding: bool, Optional + (Deprecated, kept only for compatibility.) + Whether to strip the type embedding into a separate embedding network. + Setting this parameter to `True` is equivalent to setting `tebd_input_mode` to 'strip'. + Setting it to `False` is equivalent to setting `tebd_input_mode` to 'concat'. + The default value is `None`, which means the `tebd_input_mode` setting will be used instead. + seed: int, Optional + Random seed for parameter initialization. + use_econf_tebd: bool, Optional + Whether to use electronic configuration type embedding. + use_tebd_bias : bool, Optional + Whether to use bias in the type embedding layer. + type_map: list[str], Optional + A list of strings. Give the name to each type of atoms. + spin + (Only support None to keep consistent with other backend references.) + (Not used in this version. Not-none option is not implemented.) + The old implementation of deepspin. + + Limitations + ----------- + The currently implementation will not support the following deprecated features + 1. spin is not None + 2. attn_mask == True + + References + ---------- + .. [1] Duo Zhang, Hangrui Bi, Fu-Zhi Dai, Wanrun Jiang, Linfeng Zhang, and Han Wang. 2022. + DPA-1: Pretraining of Attention-based Deep Potential Model for Molecular Simulation. + arXiv preprint arXiv:2208.08236. + """ + + def __init__( + self, + rcut: float, + rcut_smth: float, + sel: Union[list[int], int], + ntypes: int, + neuron: list = [25, 50, 100], + axis_neuron: int = 16, + tebd_dim: int = 8, + tebd_input_mode: str = "concat", + set_davg_zero: bool = True, + attn: int = 128, + attn_layer: int = 2, + attn_dotr: bool = True, + attn_mask: bool = False, + activation_function: str = "tanh", + precision: str = "float64", + resnet_dt: bool = False, + exclude_types: list[tuple[int, int]] = [], + env_protection: float = 0.0, + scaling_factor: int = 1.0, + normalize=True, + temperature=None, + concat_output_tebd: bool = True, + trainable: bool = True, + trainable_ln: bool = True, + ln_eps: Optional[float] = 1e-5, + smooth_type_embedding: bool = True, + type_one_side: bool = False, + stripped_type_embedding: Optional[bool] = None, + seed: Optional[Union[int, list[int]]] = None, + use_econf_tebd: bool = False, + use_tebd_bias: bool = False, + type_map: Optional[list[str]] = None, + # not implemented + spin=None, + type: Optional[str] = None, + ) -> None: + super().__init__() + # Ensure compatibility with the deprecated stripped_type_embedding option. + if stripped_type_embedding is not None: + # Use the user-set stripped_type_embedding parameter first + tebd_input_mode = "strip" if stripped_type_embedding else "concat" + if spin is not None: + raise NotImplementedError("old implementation of spin is not supported.") + if attn_mask: + raise NotImplementedError( + "old implementation of attn_mask is not supported." + ) + # to keep consistent with default value in this backends + if ln_eps is None: + ln_eps = 1e-5 + + self.tebd_input_mode = tebd_input_mode + + del type, spin, attn_mask + self.se_atten = DescrptBlockSeAtten( + rcut, + rcut_smth, + sel, + ntypes, + neuron=neuron, + axis_neuron=axis_neuron, + tebd_dim=tebd_dim, + tebd_input_mode=tebd_input_mode, + set_davg_zero=set_davg_zero, + attn=attn, + attn_layer=attn_layer, + attn_dotr=attn_dotr, + attn_mask=False, + activation_function=activation_function, + precision=precision, + resnet_dt=resnet_dt, + scaling_factor=scaling_factor, + normalize=normalize, + temperature=temperature, + smooth=smooth_type_embedding, + type_one_side=type_one_side, + exclude_types=exclude_types, + env_protection=env_protection, + trainable_ln=trainable_ln, + ln_eps=ln_eps, + seed=child_seed(seed, 1), + ) + self.use_econf_tebd = use_econf_tebd + self.use_tebd_bias = use_tebd_bias + self.type_map = type_map + self.compress = False + self.type_embedding = TypeEmbedNet( + ntypes, + tebd_dim, + precision=precision, + seed=child_seed(seed, 2), + use_econf_tebd=use_econf_tebd, + use_tebd_bias=use_tebd_bias, + type_map=type_map, + ) + self.prec = PRECISION_DICT[precision] + self.tebd_dim = tebd_dim + self.concat_output_tebd = concat_output_tebd + self.trainable = trainable + # set trainable + for param in self.parameters(): + param.stop_gradient = not trainable + + def get_rcut(self) -> float: + """Returns the cut-off radius.""" + return self.se_atten.get_rcut() + + def get_rcut_smth(self) -> float: + """Returns the radius where the neighbor information starts to smoothly decay to 0.""" + return self.se_atten.get_rcut_smth() + + def get_nsel(self) -> int: + """Returns the number of selected atoms in the cut-off radius.""" + return self.se_atten.get_nsel() + + def get_sel(self) -> list[int]: + """Returns the number of selected atoms for each type.""" + return self.se_atten.get_sel() + + def get_ntypes(self) -> int: + """Returns the number of element types.""" + return self.se_atten.get_ntypes() + + def get_type_map(self) -> list[str]: + """Get the name to each type of atoms.""" + return self.type_map + + def get_dim_out(self) -> int: + """Returns the output dimension.""" + ret = self.se_atten.get_dim_out() + if self.concat_output_tebd: + ret += self.tebd_dim + return ret + + def get_dim_emb(self) -> int: + return self.se_atten.dim_emb + + def mixed_types(self) -> bool: + """If true, the descriptor + 1. assumes total number of atoms aligned across frames; + 2. requires a neighbor list that does not distinguish different atomic types. + + If false, the descriptor + 1. assumes total number of atoms of each atom type aligned across frames; + 2. requires a neighbor list that distinguishes different atomic types. + + """ + return self.se_atten.mixed_types() + + def has_message_passing(self) -> bool: + """Returns whether the descriptor has message passing.""" + return self.se_atten.has_message_passing() + + def need_sorted_nlist_for_lower(self) -> bool: + """Returns whether the descriptor needs sorted nlist when using `forward_lower`.""" + return self.se_atten.need_sorted_nlist_for_lower() + + def get_env_protection(self) -> float: + """Returns the protection of building environment matrix.""" + return self.se_atten.get_env_protection() + + def share_params(self, base_class, shared_level, resume=False) -> None: + """ + Share the parameters of self to the base_class with shared_level during multitask training. + If not start from checkpoint (resume is False), + some separated parameters (e.g. mean and stddev) will be re-calculated across different classes. + """ + assert ( + self.__class__ == base_class.__class__ + ), "Only descriptors of the same type can share params!" + # For DPA1 descriptors, the user-defined share-level + # shared_level: 0 + # share all parameters in both type_embedding and se_atten + if shared_level == 0: + self._sub_layers["type_embedding"] = base_class._sub_layers[ + "type_embedding" + ] + self.se_atten.share_params(base_class.se_atten, 0, resume=resume) + # shared_level: 1 + # share all parameters in type_embedding + elif shared_level == 1: + self._sub_layers["type_embedding"] = base_class._sub_layers[ + "type_embedding" + ] + # Other shared levels + else: + raise NotImplementedError + + @property + def dim_out(self): + return self.get_dim_out() + + @property + def dim_emb(self): + return self.get_dim_emb() + + def compute_input_stats( + self, + merged: Union[Callable[[], list[dict]], list[dict]], + path: Optional[DPPath] = None, + ): + """ + Compute the input statistics (e.g. mean and stddev) for the descriptors from packed data. + + Parameters + ---------- + merged : Union[Callable[[], list[dict]], list[dict]] + - list[dict]: A list of data samples from various data systems. + Each element, `merged[i]`, is a data dictionary containing `keys`: `paddle.Tensor` + originating from the `i`-th data system. + - Callable[[], list[dict]]: A lazy function that returns data samples in the above format + only when needed. Since the sampling process can be slow and memory-intensive, + the lazy function helps by only sampling once. + path : Optional[DPPath] + The path to the stat file. + + """ + return self.se_atten.compute_input_stats(merged, path) + + def set_stat_mean_and_stddev( + self, + mean: paddle.Tensor, + stddev: paddle.Tensor, + ) -> None: + """Update mean and stddev for descriptor.""" + self.se_atten.mean = mean + self.se_atten.stddev = stddev + + def get_stat_mean_and_stddev(self) -> tuple[paddle.Tensor, paddle.Tensor]: + """Get mean and stddev for descriptor.""" + return self.se_atten.mean, self.se_atten.stddev + + def change_type_map( + self, type_map: list[str], model_with_new_type_stat=None + ) -> None: + """Change the type related params to new ones, according to `type_map` and the original one in the model. + If there are new types in `type_map`, statistics will be updated accordingly to `model_with_new_type_stat` for these new types. + """ + assert ( + self.type_map is not None + ), "'type_map' must be defined when performing type changing!" + remap_index, has_new_type = get_index_between_two_maps(self.type_map, type_map) + obj = self.se_atten + obj.ntypes = len(type_map) + self.type_map = type_map + self.type_embedding.change_type_map(type_map=type_map) + obj.reinit_exclude(map_pair_exclude_types(obj.exclude_types, remap_index)) + if has_new_type: + # the avg and std of new types need to be updated + extend_descrpt_stat( + obj, + type_map, + des_with_stat=model_with_new_type_stat.se_atten + if model_with_new_type_stat is not None + else None, + ) + obj["davg"] = obj["davg"][remap_index] + obj["dstd"] = obj["dstd"][remap_index] + + def serialize(self) -> dict: + obj = self.se_atten + data = { + "@class": "Descriptor", + "type": "dpa1", + "@version": 2, + "rcut": obj.rcut, + "rcut_smth": obj.rcut_smth, + "sel": obj.sel, + "ntypes": obj.ntypes, + "neuron": obj.neuron, + "axis_neuron": obj.axis_neuron, + "tebd_dim": obj.tebd_dim, + "tebd_input_mode": obj.tebd_input_mode, + "set_davg_zero": obj.set_davg_zero, + "attn": obj.attn_dim, + "attn_layer": obj.attn_layer, + "attn_dotr": obj.attn_dotr, + "attn_mask": False, + "activation_function": obj.activation_function, + "resnet_dt": obj.resnet_dt, + "scaling_factor": obj.scaling_factor, + "normalize": obj.normalize, + "temperature": obj.temperature, + "trainable_ln": obj.trainable_ln, + "ln_eps": obj.ln_eps, + "smooth_type_embedding": obj.smooth, + "type_one_side": obj.type_one_side, + "concat_output_tebd": self.concat_output_tebd, + "use_econf_tebd": self.use_econf_tebd, + "use_tebd_bias": self.use_tebd_bias, + "type_map": self.type_map, + # make deterministic + "precision": RESERVED_PRECISON_DICT[obj.prec], + "embeddings": obj.filter_layers.serialize(), + "attention_layers": obj.dpa1_attention.serialize(), + "env_mat": DPEnvMat(obj.rcut, obj.rcut_smth).serialize(), + "type_embedding": self.type_embedding.embedding.serialize(), + "exclude_types": obj.exclude_types, + "env_protection": obj.env_protection, + "@variables": { + "davg": obj["davg"].numpy(), + "dstd": obj["dstd"].numpy(), + }, + "trainable": self.trainable, + "spin": None, + } + if obj.tebd_input_mode in ["strip"]: + data.update({"embeddings_strip": obj.filter_layers_strip.serialize()}) + return data + + @classmethod + def deserialize(cls, data: dict) -> "DescrptDPA1": + data = data.copy() + check_version_compatibility(data.pop("@version"), 2, 1) + data.pop("@class") + data.pop("type") + variables = data.pop("@variables") + embeddings = data.pop("embeddings") + type_embedding = data.pop("type_embedding") + attention_layers = data.pop("attention_layers") + env_mat = data.pop("env_mat") + tebd_input_mode = data["tebd_input_mode"] + if tebd_input_mode in ["strip"]: + embeddings_strip = data.pop("embeddings_strip") + else: + embeddings_strip = None + # compat with version 1 + if "use_tebd_bias" not in data: + data["use_tebd_bias"] = True + obj = cls(**data) + + def t_cvt(xx): + return paddle.to_tensor(xx, dtype=obj.se_atten.prec).to(device=env.DEVICE) + + obj.type_embedding.embedding = TypeEmbedNetConsistent.deserialize( + type_embedding + ) + obj.se_atten["davg"] = t_cvt(variables["davg"]) + obj.se_atten["dstd"] = t_cvt(variables["dstd"]) + obj.se_atten.filter_layers = NetworkCollection.deserialize(embeddings) + if tebd_input_mode in ["strip"]: + obj.se_atten.filter_layers_strip = NetworkCollection.deserialize( + embeddings_strip + ) + obj.se_atten.dpa1_attention = NeighborGatedAttention.deserialize( + attention_layers + ) + return obj + + def enable_compression( + self, + min_nbor_dist: float, + table_extrapolate: float = 5, + table_stride_1: float = 0.01, + table_stride_2: float = 0.1, + check_frequency: int = -1, + ) -> None: + """Receive the statisitcs (distance, max_nbor_size and env_mat_range) of the training data. + + Parameters + ---------- + min_nbor_dist + The nearest distance between atoms + table_extrapolate + The scale of model extrapolation + table_stride_1 + The uniform stride of the first table + table_stride_2 + The uniform stride of the second table + check_frequency + The overflow check frequency + """ + # do some checks before the mocel compression process + raise NotImplementedError("Model compression is not supported in paddle yet.") + + def forward( + self, + extended_coord: paddle.Tensor, + extended_atype: paddle.Tensor, + nlist: paddle.Tensor, + mapping: Optional[paddle.Tensor] = None, + comm_dict: Optional[dict[str, paddle.Tensor]] = None, + ): + """Compute the descriptor. + + Parameters + ---------- + extended_coord + The extended coordinates of atoms. shape: nf x (nallx3) + extended_atype + The extended aotm types. shape: nf x nall + nlist + The neighbor list. shape: nf x nloc x nnei + mapping + The index mapping, not required by this descriptor. + comm_dict + The data needed for communication for parallel inference. + + Returns + ------- + descriptor + The descriptor. shape: nf x nloc x (ng x axis_neuron) + gr + The rotationally equivariant and permutationally invariant single particle + representation. shape: nf x nloc x ng x 3 + g2 + The rotationally invariant pair-partical representation. + shape: nf x nloc x nnei x ng + h2 + The rotationally equivariant pair-partical representation. + shape: nf x nloc x nnei x 3 + sw + The smooth switch function. shape: nf x nloc x nnei + + """ + # cast the input to internal precsion + extended_coord = extended_coord.to(dtype=self.prec) + del mapping + nframes, nloc, nnei = nlist.shape + nall = extended_coord.reshape([nframes, -1]).shape[1] // 3 + g1_ext = self.type_embedding(extended_atype) + g1_inp = g1_ext[:, :nloc, :] + if self.tebd_input_mode in ["strip"]: + type_embedding = self.type_embedding.get_full_embedding(g1_ext.place) + else: + type_embedding = None + g1, g2, h2, rot_mat, sw = self.se_atten( + nlist, + extended_coord, + extended_atype, + g1_ext, + mapping=None, + type_embedding=type_embedding, + ) + if self.concat_output_tebd: + g1 = paddle.concat([g1, g1_inp], axis=-1) + + return ( + g1.to(dtype=env.GLOBAL_PD_FLOAT_PRECISION), + rot_mat.to(dtype=env.GLOBAL_PD_FLOAT_PRECISION), + g2.to(dtype=env.GLOBAL_PD_FLOAT_PRECISION) if g2 is not None else None, + h2.to(dtype=env.GLOBAL_PD_FLOAT_PRECISION), + sw.to(dtype=env.GLOBAL_PD_FLOAT_PRECISION), + ) + + @classmethod + def update_sel( + cls, + train_data: DeepmdDataSystem, + type_map: Optional[list[str]], + local_jdata: dict, + ) -> tuple[dict, Optional[float]]: + """Update the selection and perform neighbor statistics. + + Parameters + ---------- + train_data : DeepmdDataSystem + data used to do neighbor statistics + type_map : list[str], optional + The name of each type of atoms + local_jdata : dict + The local data refer to the current class + + Returns + ------- + dict + The updated local data + float + The minimum distance between two atoms + """ + local_jdata_cpy = local_jdata.copy() + min_nbor_dist, sel = UpdateSel().update_one_sel( + train_data, type_map, local_jdata_cpy["rcut"], local_jdata_cpy["sel"], True + ) + local_jdata_cpy["sel"] = sel[0] + return local_jdata_cpy, min_nbor_dist diff --git a/deepmd/pd/model/descriptor/env_mat.py b/deepmd/pd/model/descriptor/env_mat.py index 3a9daec1e8..9b72da0b16 100644 --- a/deepmd/pd/model/descriptor/env_mat.py +++ b/deepmd/pd/model/descriptor/env_mat.py @@ -2,9 +2,6 @@ import paddle -from deepmd.pd.utils import ( - decomp, -) from deepmd.pd.utils.preprocess import ( compute_smooth_weight, ) @@ -27,12 +24,10 @@ def _make_env_mat( nlist = paddle.where(mask, nlist, nall - 1) coord_l = coord[:, :natoms].reshape([bsz, -1, 1, 3]) index = nlist.reshape([bsz, -1]).unsqueeze(-1).expand([-1, -1, 3]) - # coord_r = paddle.take_along_axis(coord, axis=1, indices=index) - coord_r = decomp.take_along_axis(coord, axis=1, indices=index) + coord_r = paddle.take_along_axis(coord, axis=1, indices=index) coord_r = coord_r.reshape([bsz, natoms, nnei, 3]) diff = coord_r - coord_l - # length = paddle.linalg.norm(diff, axis=-1, keepdim=True) - length = decomp.norm(diff, axis=-1, keepdim=True) + length = paddle.linalg.norm(diff, axis=-1, keepdim=True) # for index 0 nloc atom length = length + (~mask.unsqueeze(-1)).astype(length.dtype) t0 = 1 / (length + protection) diff --git a/deepmd/pd/model/descriptor/se_a.py b/deepmd/pd/model/descriptor/se_a.py index 180d6f0a3f..0af6d082b8 100644 --- a/deepmd/pd/model/descriptor/se_a.py +++ b/deepmd/pd/model/descriptor/se_a.py @@ -9,6 +9,7 @@ import numpy as np import paddle +import paddle.nn as nn from deepmd.dpmodel.utils.seed import ( child_seed, @@ -87,13 +88,14 @@ def __init__( type_map: Optional[list[str]] = None, # not implemented spin=None, - ): + ) -> None: del ntypes if spin is not None: raise NotImplementedError("old implementation of spin is not supported.") super().__init__() self.type_map = type_map self.compress = False + self.prec = PRECISION_DICT[precision] self.sea = DescrptBlockSeA( rcut, rcut_smth, @@ -161,7 +163,7 @@ def get_env_protection(self) -> float: """Returns the protection of building environment matrix.""" return self.sea.get_env_protection() - def share_params(self, base_class, shared_level, resume=False): + def share_params(self, base_class, shared_level, resume=False) -> None: """ Share the parameters of self to the base_class with shared_level during multitask training. If not start from checkpoint (resume is False), @@ -222,10 +224,35 @@ def compute_input_stats( def reinit_exclude( self, exclude_types: list[tuple[int, int]] = [], - ): + ) -> None: """Update the type exclusions.""" self.sea.reinit_exclude(exclude_types) + def enable_compression( + self, + min_nbor_dist: float, + table_extrapolate: float = 5, + table_stride_1: float = 0.01, + table_stride_2: float = 0.1, + check_frequency: int = -1, + ) -> None: + """Receive the statisitcs (distance, max_nbor_size and env_mat_range) of the training data. + + Parameters + ---------- + min_nbor_dist + The nearest distance between atoms + table_extrapolate + The scale of model extrapolation + table_stride_1 + The uniform stride of the first table + table_stride_2 + The uniform stride of the second table + check_frequency + The overflow check frequency + """ + raise ValueError("Enable compression is not supported.") + def forward( self, coord_ext: paddle.Tensor, @@ -266,7 +293,18 @@ def forward( The smooth switch function. """ - return self.sea.forward(nlist, coord_ext, atype_ext, None, mapping) + # cast the input to internal precsion + coord_ext = coord_ext.to(dtype=self.prec) + g1, rot_mat, g2, h2, sw = self.sea.forward( + nlist, coord_ext, atype_ext, None, mapping + ) + return ( + g1.to(dtype=env.GLOBAL_PD_FLOAT_PRECISION), + rot_mat.to(dtype=env.GLOBAL_PD_FLOAT_PRECISION), + None, + None, + sw.to(dtype=env.GLOBAL_PD_FLOAT_PRECISION), + ) def set_stat_mean_and_stddev( self, @@ -367,10 +405,6 @@ def update_sel( class DescrptBlockSeA(DescriptorBlock): ndescrpt: Final[int] __constants__: ClassVar[list] = ["ndescrpt"] - lower: dict[str, int] - upper: dict[str, int] - table_data: dict[str, paddle.Tensor] - table_config: list[Union[int, float]] def __init__( self, @@ -389,7 +423,7 @@ def __init__( trainable: bool = True, seed: Optional[Union[int, list[int]]] = None, **kwargs, - ): + ) -> None: """Construct an embedding net of type `se_a`. Args: @@ -430,13 +464,6 @@ def __init__( self.register_buffer("mean", mean) self.register_buffer("stddev", stddev) - # add for compression - self.compress = False - self.lower = {} - self.upper = {} - self.table_data = {} - self.table_config = [] - ndim = 1 if self.type_one_side else 2 filter_layers = NetworkCollection( ndim=ndim, ntypes=len(sel), network_type="embedding_network" @@ -459,6 +486,21 @@ def __init__( for param in self.parameters(): param.stop_gradient = not trainable + # add for compression + self.compress = False + self.compress_info = nn.ParameterList( + [ + self.create_parameter([], dtype=self.prec).to(device="cpu") + for _ in range(len(self.filter_layers.networks)) + ] + ) + self.compress_data = nn.ParameterList( + [ + self.create_parameter([], dtype=self.prec).to(device=env.DEVICE) + for _ in range(len(self.filter_layers.networks)) + ] + ) + def get_rcut(self) -> float: """Returns the cut-off radius.""" return self.rcut @@ -517,11 +559,11 @@ def dim_out(self): return self.filter_neuron[-1] * self.axis_neuron @property - def dim_in(self): + def dim_in(self) -> int: """Returns the atomic input dimension of this descriptor.""" return 0 - def __setitem__(self, key, value): + def __setitem__(self, key, value) -> None: if key in ("avg", "data_avg", "davg"): self.mean = value elif key in ("std", "data_std", "dstd"): @@ -541,7 +583,7 @@ def compute_input_stats( self, merged: Union[Callable[[], list[dict]], list[dict]], path: Optional[DPPath] = None, - ): + ) -> None: """ Compute the input statistics (e.g. mean and stddev) for the descriptors from packed data. @@ -587,22 +629,45 @@ def get_stats(self) -> dict[str, StatItem]: def reinit_exclude( self, exclude_types: list[tuple[int, int]] = [], - ): + ) -> None: self.exclude_types = exclude_types self.emask = PairExcludeMask(self.ntypes, exclude_types=exclude_types) def enable_compression( self, - table_data, - table_config, - lower, - upper, + table_data: dict[str, paddle.Tensor], + table_config: list[Union[int, float]], + lower: dict[str, int], + upper: dict[str, int], ) -> None: + for embedding_idx, ll in enumerate(self.filter_layers.networks): + if self.type_one_side: + ii = embedding_idx + ti = -1 + else: + # ti: center atom type, ii: neighbor type... + ii = embedding_idx // self.ntypes + ti = embedding_idx % self.ntypes + if self.type_one_side: + net = "filter_-1_net_" + str(ii) + else: + net = "filter_" + str(ti) + "_net_" + str(ii) + info_ii = paddle.to_tensor( + [ + lower[net], + upper[net], + upper[net] * table_config[0], + table_config[1], + table_config[2], + table_config[3], + ], + dtype=self.prec, + place="cpu", + ) + tensor_data_ii = table_data[net].to(device=env.DEVICE, dtype=self.prec) + self.compress_data[embedding_idx] = tensor_data_ii + self.compress_info[embedding_idx] = info_ii self.compress = True - self.table_data = table_data - self.table_config = table_config - self.lower = lower - self.upper = upper def forward( self, @@ -611,6 +676,7 @@ def forward( extended_atype: paddle.Tensor, extended_atype_embd: Optional[paddle.Tensor] = None, mapping: Optional[paddle.Tensor] = None, + type_embedding: Optional[paddle.Tensor] = None, ): """Calculate decoded embedding for each atom. @@ -627,7 +693,7 @@ def forward( del extended_atype_embd, mapping nf = nlist.shape[0] nloc = nlist.shape[1] - atype: paddle.Tensor = extended_atype[:, :nloc] + atype = extended_atype[:, :nloc] dmatrix, diff, sw = prod_env_mat( extended_coord, nlist, @@ -640,7 +706,6 @@ def forward( ) dmatrix = dmatrix.reshape([-1, self.nnei, 4]) - dmatrix = dmatrix.astype(self.prec) nfnl = dmatrix.shape[0] # pre-allocate a shape to pass jit xyz_scatter = paddle.zeros( @@ -649,7 +714,9 @@ def forward( ).to(extended_coord.place) # nfnl x nnei exclude_mask = self.emask(nlist, extended_atype).reshape([nfnl, self.nnei]) - for embedding_idx, ll in enumerate(self.filter_layers.networks): + for embedding_idx, (ll, compress_data_ii, compress_info_ii) in enumerate( + zip(self.filter_layers.networks, self.compress_data, self.compress_info) + ): if self.type_one_side: ii = embedding_idx ti = -1 @@ -680,10 +747,16 @@ def forward( if rr.numel() > 0: rr = rr * mm.unsqueeze(2).astype(rr.dtype) ss = rr[:, :, :1] - # nfnl x nt x ng - gg = ll.forward(ss) - # nfnl x 4 x ng - gr = paddle.matmul(rr.transpose([0, 2, 1]), gg) + if self.compress: + raise NotImplementedError( + "Compressed environment is not implemented yet." + ) + else: + # nfnl x nt x ng + gg = ll.forward(ss) + # nfnl x 4 x ng + gr = paddle.matmul(rr.transpose([0, 2, 1]), gg) + if ti_mask is not None: xyz_scatter[ti_mask] += gr else: @@ -699,8 +772,8 @@ def forward( result = result.reshape([nf, nloc, self.filter_neuron[-1] * self.axis_neuron]) rot_mat = rot_mat.reshape([nf, nloc] + list(rot_mat.shape[1:])) # noqa:RUF005 return ( - result.astype(env.GLOBAL_PD_FLOAT_PRECISION), - rot_mat.astype(env.GLOBAL_PD_FLOAT_PRECISION), + result, + rot_mat, None, None, sw, diff --git a/deepmd/pd/model/descriptor/se_atten.py b/deepmd/pd/model/descriptor/se_atten.py new file mode 100644 index 0000000000..1ebf8c6717 --- /dev/null +++ b/deepmd/pd/model/descriptor/se_atten.py @@ -0,0 +1,1073 @@ +# SPDX-License-Identifier: LGPL-3.0-or-later +from typing import ( + Callable, + Optional, + Union, +) + +import paddle +import paddle.nn as nn +import paddle.nn.functional as paddle_func + +from deepmd.dpmodel.utils.seed import ( + child_seed, +) +from deepmd.pd.model.descriptor.descriptor import ( + DescriptorBlock, +) +from deepmd.pd.model.descriptor.env_mat import ( + prod_env_mat, +) +from deepmd.pd.model.network.layernorm import ( + LayerNorm, +) +from deepmd.pd.model.network.mlp import ( + EmbeddingNet, + MLPLayer, + NetworkCollection, +) +from deepmd.pd.utils import ( + env, +) +from deepmd.pd.utils.env import ( + DEFAULT_PRECISION, + PRECISION_DICT, +) +from deepmd.pd.utils.env_mat_stat import ( + EnvMatStatSe, +) +from deepmd.pd.utils.exclude_mask import ( + PairExcludeMask, +) +from deepmd.utils.env_mat_stat import ( + StatItem, +) +from deepmd.utils.path import ( + DPPath, +) +from deepmd.utils.version import ( + check_version_compatibility, +) + + +@DescriptorBlock.register("se_atten") +class DescrptBlockSeAtten(DescriptorBlock): + def __init__( + self, + rcut: float, + rcut_smth: float, + sel: Union[list[int], int], + ntypes: int, + neuron: list = [25, 50, 100], + axis_neuron: int = 16, + tebd_dim: int = 8, + tebd_input_mode: str = "concat", + set_davg_zero: bool = True, + attn: int = 128, + attn_layer: int = 2, + attn_dotr: bool = True, + attn_mask: bool = False, + activation_function="tanh", + precision: str = "float64", + resnet_dt: bool = False, + scaling_factor=1.0, + normalize=True, + temperature=None, + smooth: bool = True, + type_one_side: bool = False, + exclude_types: list[tuple[int, int]] = [], + env_protection: float = 0.0, + trainable_ln: bool = True, + ln_eps: Optional[float] = 1e-5, + seed: Optional[Union[int, list[int]]] = None, + type: Optional[str] = None, + ) -> None: + r"""Construct an embedding net of type `se_atten`. + + Parameters + ---------- + rcut : float + The cut-off radius :math:`r_c` + rcut_smth : float + From where the environment matrix should be smoothed :math:`r_s` + sel : list[int], int + list[int]: sel[i] specifies the maxmum number of type i atoms in the cut-off radius + int: the total maxmum number of atoms in the cut-off radius + ntypes : int + Number of element types + neuron : list[int] + Number of neurons in each hidden layers of the embedding net :math:`\mathcal{N}` + axis_neuron : int + Number of the axis neuron :math:`M_2` (number of columns of the sub-matrix of the embedding matrix) + tebd_dim : int + Dimension of the type embedding + tebd_input_mode : str + The input mode of the type embedding. Supported modes are ["concat", "strip"]. + - "concat": Concatenate the type embedding with the smoothed radial information as the union input for the embedding network. + - "strip": Use a separated embedding network for the type embedding and combine the output with the radial embedding network output. + resnet_dt : bool + Time-step `dt` in the resnet construction: + y = x + dt * \phi (Wx + b) + trainable_ln : bool + Whether to use trainable shift and scale weights in layer normalization. + ln_eps : float, Optional + The epsilon value for layer normalization. + type_one_side : bool + If 'False', type embeddings of both neighbor and central atoms are considered. + If 'True', only type embeddings of neighbor atoms are considered. + Default is 'False'. + attn : int + Hidden dimension of the attention vectors + attn_layer : int + Number of attention layers + attn_dotr : bool + If dot the angular gate to the attention weights + attn_mask : bool + (Only support False to keep consistent with other backend references.) + (Not used in this version.) + If mask the diagonal of attention weights + exclude_types : list[list[int]] + The excluded pairs of types which have no interaction with each other. + For example, `[[0, 1]]` means no interaction between type 0 and type 1. + env_protection : float + Protection parameter to prevent division by zero errors during environment matrix calculations. + set_davg_zero : bool + Set the shift of embedding net input to zero. + activation_function : str + The activation function in the embedding net. Supported options are |ACTIVATION_FN| + precision : str + The precision of the embedding net parameters. Supported options are |PRECISION| + scaling_factor : float + The scaling factor of normalization in calculations of attention weights. + If `temperature` is None, the scaling of attention weights is (N_dim * scaling_factor)**0.5 + normalize : bool + Whether to normalize the hidden vectors in attention weights calculation. + temperature : float + If not None, the scaling of attention weights is `temperature` itself. + seed : int, Optional + Random seed for parameter initialization. + """ + super().__init__() + del type + self.rcut = float(rcut) + self.rcut_smth = float(rcut_smth) + self.neuron = neuron + self.filter_neuron = self.neuron + self.axis_neuron = axis_neuron + self.tebd_dim = tebd_dim + self.tebd_input_mode = tebd_input_mode + self.set_davg_zero = set_davg_zero + self.attn_dim = attn + self.attn_layer = attn_layer + self.attn_dotr = attn_dotr + self.attn_mask = attn_mask + self.activation_function = activation_function + self.precision = precision + self.prec = PRECISION_DICT[self.precision] + self.resnet_dt = resnet_dt + self.scaling_factor = scaling_factor + self.normalize = normalize + self.temperature = temperature + self.smooth = smooth + self.type_one_side = type_one_side + self.env_protection = env_protection + self.trainable_ln = trainable_ln + self.seed = seed + # to keep consistent with default value in this backends + if ln_eps is None: + ln_eps = 1e-5 + self.ln_eps = ln_eps + + if isinstance(sel, int): + sel = [sel] + + self.ntypes = ntypes + self.sel = sel + self.sec = self.sel + self.split_sel = self.sel + self.nnei = sum(sel) + self.ndescrpt = self.nnei * 4 + # order matters, placed after the assignment of self.ntypes + self.reinit_exclude(exclude_types) + + self.dpa1_attention = NeighborGatedAttention( + self.attn_layer, + self.nnei, + self.filter_neuron[-1], + self.attn_dim, + dotr=self.attn_dotr, + do_mask=self.attn_mask, + scaling_factor=self.scaling_factor, + normalize=self.normalize, + temperature=self.temperature, + trainable_ln=self.trainable_ln, + ln_eps=self.ln_eps, + smooth=self.smooth, + precision=self.precision, + seed=child_seed(self.seed, 0), + ) + + wanted_shape = (self.ntypes, self.nnei, 4) + mean = paddle.zeros(wanted_shape, dtype=self.prec).to(device=env.DEVICE) + stddev = paddle.ones(wanted_shape, dtype=self.prec).to(device=env.DEVICE) + self.register_buffer("mean", mean) + self.register_buffer("stddev", stddev) + self.tebd_dim_input = self.tebd_dim if self.type_one_side else self.tebd_dim * 2 + if self.tebd_input_mode in ["concat"]: + self.embd_input_dim = 1 + self.tebd_dim_input + else: + self.embd_input_dim = 1 + + self.filter_layers_strip = None + filter_layers = NetworkCollection( + ndim=0, ntypes=self.ntypes, network_type="embedding_network" + ) + filter_layers[0] = EmbeddingNet( + self.embd_input_dim, + self.filter_neuron, + activation_function=self.activation_function, + precision=self.precision, + resnet_dt=self.resnet_dt, + seed=child_seed(self.seed, 1), + ) + self.filter_layers = filter_layers + if self.tebd_input_mode in ["strip"]: + filter_layers_strip = NetworkCollection( + ndim=0, ntypes=self.ntypes, network_type="embedding_network" + ) + filter_layers_strip[0] = EmbeddingNet( + self.tebd_dim_input, + self.filter_neuron, + activation_function=self.activation_function, + precision=self.precision, + resnet_dt=self.resnet_dt, + seed=child_seed(self.seed, 2), + ) + self.filter_layers_strip = filter_layers_strip + self.stats = None + + # add for compression + self.compress = False + self.is_sorted = False + self.compress_info = nn.ParameterList( + [ + self.create_parameter( + [], default_initializer=nn.initializer.Constant(0), dtype=self.prec + ).to("cpu") + ] + ) + self.compress_data = nn.ParameterList( + [ + self.create_parameter( + [], default_initializer=nn.initializer.Constant(0), dtype=self.prec + ).to(env.DEVICE) + ] + ) + + def get_rcut(self) -> float: + """Returns the cut-off radius.""" + return self.rcut + + def get_rcut_smth(self) -> float: + """Returns the radius where the neighbor information starts to smoothly decay to 0.""" + return self.rcut_smth + + def get_nsel(self) -> int: + """Returns the number of selected atoms in the cut-off radius.""" + return sum(self.sel) + + def get_sel(self) -> list[int]: + """Returns the number of selected atoms for each type.""" + return self.sel + + def get_ntypes(self) -> int: + """Returns the number of element types.""" + return self.ntypes + + def get_dim_in(self) -> int: + """Returns the input dimension.""" + return self.dim_in + + def get_dim_out(self) -> int: + """Returns the output dimension.""" + return self.dim_out + + def get_dim_rot_mat_1(self) -> int: + """Returns the first dimension of the rotation matrix. The rotation is of shape dim_1 x 3.""" + return self.filter_neuron[-1] + + def get_dim_emb(self) -> int: + """Returns the output dimension of embedding.""" + return self.filter_neuron[-1] + + def __setitem__(self, key, value) -> None: + if key in ("avg", "data_avg", "davg"): + self.mean = value + elif key in ("std", "data_std", "dstd"): + self.stddev = value + else: + raise KeyError(key) + + def __getitem__(self, key): + if key in ("avg", "data_avg", "davg"): + return self.mean + elif key in ("std", "data_std", "dstd"): + return self.stddev + else: + raise KeyError(key) + + def mixed_types(self) -> bool: + """If true, the descriptor + 1. assumes total number of atoms aligned across frames; + 2. requires a neighbor list that does not distinguish different atomic types. + + If false, the descriptor + 1. assumes total number of atoms of each atom type aligned across frames; + 2. requires a neighbor list that distinguishes different atomic types. + + """ + return True + + def get_env_protection(self) -> float: + """Returns the protection of building environment matrix.""" + return self.env_protection + + @property + def dim_out(self): + """Returns the output dimension of this descriptor.""" + return self.filter_neuron[-1] * self.axis_neuron + + @property + def dim_in(self): + """Returns the atomic input dimension of this descriptor.""" + return self.tebd_dim + + @property + def dim_emb(self): + """Returns the output dimension of embedding.""" + return self.get_dim_emb() + + def compute_input_stats( + self, + merged: Union[Callable[[], list[dict]], list[dict]], + path: Optional[DPPath] = None, + ) -> None: + """ + Compute the input statistics (e.g. mean and stddev) for the descriptors from packed data. + + Parameters + ---------- + merged : Union[Callable[[], list[dict]], list[dict]] + - list[dict]: A list of data samples from various data systems. + Each element, `merged[i]`, is a data dictionary containing `keys`: `paddle.Tensor` + originating from the `i`-th data system. + - Callable[[], list[dict]]: A lazy function that returns data samples in the above format + only when needed. Since the sampling process can be slow and memory-intensive, + the lazy function helps by only sampling once. + path : Optional[DPPath] + The path to the stat file. + + """ + env_mat_stat = EnvMatStatSe(self) + if path is not None: + path = path / env_mat_stat.get_hash() + if path is None or not path.is_dir(): + if callable(merged): + # only get data for once + sampled = merged() + else: + sampled = merged + else: + sampled = [] + env_mat_stat.load_or_compute_stats(sampled, path) + self.stats = env_mat_stat.stats + mean, stddev = env_mat_stat() + if not self.set_davg_zero: + paddle.assign(paddle.to_tensor(mean).to(device=env.DEVICE), self.mean) # pylint: disable=no-explicit-dtype + paddle.assign(paddle.to_tensor(stddev).to(device=env.DEVICE), self.stddev) # pylint: disable=no-explicit-dtype + + def get_stats(self) -> dict[str, StatItem]: + """Get the statistics of the descriptor.""" + if self.stats is None: + raise RuntimeError( + "The statistics of the descriptor has not been computed." + ) + return self.stats + + def reinit_exclude( + self, + exclude_types: list[tuple[int, int]] = [], + ) -> None: + self.exclude_types = exclude_types + self.is_sorted = len(self.exclude_types) == 0 + self.emask = PairExcludeMask(self.ntypes, exclude_types=exclude_types) + + def enable_compression( + self, + table_data, + table_config, + lower, + upper, + ) -> None: + net = "filter_net" + self.compress_info[0] = paddle.to_tensor( + [ + lower[net], + upper[net], + upper[net] * table_config[0], + table_config[1], + table_config[2], + table_config[3], + ], + dtype=self.prec, + place="cpu", + ) + self.compress_data[0] = table_data[net].to(device=env.DEVICE, dtype=self.prec) + self.compress = True + + def forward( + self, + nlist: paddle.Tensor, + extended_coord: paddle.Tensor, + extended_atype: paddle.Tensor, + extended_atype_embd: Optional[paddle.Tensor] = None, + mapping: Optional[paddle.Tensor] = None, + type_embedding: Optional[paddle.Tensor] = None, + ): + """Compute the descriptor. + + Parameters + ---------- + nlist + The neighbor list. shape: nf x nloc x nnei + extended_coord + The extended coordinates of atoms. shape: nf x (nallx3) + extended_atype + The extended aotm types. shape: nf x nall x nt + extended_atype_embd + The extended type embedding of atoms. shape: nf x nall + mapping + The index mapping, not required by this descriptor. + type_embedding + Full type embeddings. shape: (ntypes+1) x nt + Required for stripped type embeddings. + + Returns + ------- + result + The descriptor. shape: nf x nloc x (ng x axis_neuron) + g2 + The rotationally invariant pair-partical representation. + shape: nf x nloc x nnei x ng + h2 + The rotationally equivariant pair-partical representation. + shape: nf x nloc x nnei x 3 + gr + The rotationally equivariant and permutationally invariant single particle + representation. shape: nf x nloc x ng x 3 + sw + The smooth switch function. shape: nf x nloc x nnei + + """ + del mapping + assert extended_atype_embd is not None + nframes, nloc, nnei = nlist.shape + atype = extended_atype[:, :nloc] + nb = nframes + nall = extended_coord.reshape([nb, -1, 3]).shape[1] + dmatrix, diff, sw = prod_env_mat( + extended_coord, + nlist, + atype, + self.mean, + self.stddev, + self.rcut, + self.rcut_smth, + protection=self.env_protection, + ) + # nb x nloc x nnei + exclude_mask = self.emask(nlist, extended_atype) + nlist = paddle.where(exclude_mask != 0, nlist, paddle.full_like(nlist, -1)) + nlist_mask = nlist != -1 + nlist = paddle.where(nlist == -1, paddle.zeros_like(nlist), nlist) + sw = paddle.squeeze(sw, -1) + # nf x nall x nt + nt = extended_atype_embd.shape[-1] + # beyond the cutoff sw should be 0.0 + sw = sw.masked_fill(~nlist_mask, 0.0) + # (nb x nloc) x nnei + exclude_mask = exclude_mask.reshape([nb * nloc, nnei]) + # nfnl x nnei x 4 + dmatrix = dmatrix.reshape([-1, self.nnei, 4]) + nfnl = dmatrix.shape[0] + # nfnl x nnei x 4 + rr = dmatrix + rr = rr * exclude_mask[:, :, None].astype(rr.dtype) + ss = rr[:, :, :1] + if self.tebd_input_mode in ["concat"]: + atype_tebd_ext = extended_atype_embd + # nb x (nloc x nnei) x nt + index = nlist.reshape([nb, nloc * nnei]).unsqueeze(-1).expand([-1, -1, nt]) + # nb x (nloc x nnei) x nt + atype_tebd_nlist = paddle.take_along_axis( + atype_tebd_ext, axis=1, indices=index + ) # j + # nb x nloc x nnei x nt + atype_tebd_nlist = atype_tebd_nlist.reshape([nb, nloc, nnei, nt]) + + # nf x nloc x nt -> nf x nloc x nnei x nt + atype_tebd = extended_atype_embd[:, :nloc, :] + atype_tebd_nnei = atype_tebd.unsqueeze(2).expand( + [-1, -1, self.nnei, -1] + ) # i + + nlist_tebd = atype_tebd_nlist.reshape([nfnl, nnei, self.tebd_dim]) + atype_tebd = atype_tebd_nnei.reshape([nfnl, nnei, self.tebd_dim]) + if not self.type_one_side: + # nfnl x nnei x (1 + tebd_dim * 2) + ss = paddle.concat([ss, nlist_tebd, atype_tebd], axis=2) + else: + # nfnl x nnei x (1 + tebd_dim) + ss = paddle.concat([ss, nlist_tebd], axis=2) + # nfnl x nnei x ng + gg = self.filter_layers.networks[0](ss) + input_r = paddle.nn.functional.normalize( + rr.reshape([-1, self.nnei, 4])[:, :, 1:4], axis=-1 + ) + gg = self.dpa1_attention( + gg, nlist_mask, input_r=input_r, sw=sw + ) # shape is [nframes*nloc, self.neei, out_size] + # nfnl x 4 x ng + xyz_scatter = paddle.matmul(rr.transpose([0, 2, 1]), gg) + elif self.tebd_input_mode in ["strip"]: + assert self.filter_layers_strip is not None + assert type_embedding is not None + ng = self.filter_neuron[-1] + ntypes_with_padding = type_embedding.shape[0] + # nf x (nl x nnei) + nlist_index = nlist.reshape([nb, nloc * nnei]) + # nf x (nl x nnei) + nei_type = paddle.take_along_axis( + extended_atype, indices=nlist_index, axis=1 + ) + # (nf x nl x nnei) x ng + nei_type_index = nei_type.reshape([-1, 1]).expand([-1, ng]).to(paddle.int64) + if self.type_one_side: + tt_full = self.filter_layers_strip.networks[0](type_embedding) + # (nf x nl x nnei) x ng + gg_t = paddle.take_along_axis(tt_full, indices=nei_type_index, axis=0) + else: + idx_i = paddle.tile( + atype.reshape([-1, 1]) * ntypes_with_padding, [1, nnei] + ).reshape([-1]) + idx_j = nei_type.reshape([-1]) + # (nf x nl x nnei) x ng + idx = (idx_i + idx_j).reshape([-1, 1]).expand([-1, ng]).to(paddle.int64) + # (ntypes) * ntypes * nt + type_embedding_nei = paddle.tile( + type_embedding.reshape([1, ntypes_with_padding, nt]), + [ntypes_with_padding, 1, 1], + ) + # ntypes * (ntypes) * nt + type_embedding_center = paddle.tile( + type_embedding.reshape([ntypes_with_padding, 1, nt]), + [1, ntypes_with_padding, 1], + ) + # (ntypes * ntypes) * (nt+nt) + two_side_type_embedding = paddle.concat( + [type_embedding_nei, type_embedding_center], -1 + ).reshape([-1, nt * 2]) + tt_full = self.filter_layers_strip.networks[0](two_side_type_embedding) + # (nf x nl x nnei) x ng + gg_t = paddle.take_along_axis(tt_full, axis=0, indices=idx) + # (nf x nl) x nnei x ng + gg_t = gg_t.reshape([nfnl, nnei, ng]) + if self.smooth: + gg_t = gg_t * sw.reshape([-1, self.nnei, 1]) + if self.compress: + raise NotImplementedError("Compression is not implemented yet.") + else: + # nfnl x nnei x ng + gg_s = self.filter_layers.networks[0](ss) + # nfnl x nnei x ng + gg = gg_s * gg_t + gg_s + input_r = paddle_func.normalize( + rr.reshape([-1, self.nnei, 4])[:, :, 1:4], axis=-1 + ) + gg = self.dpa1_attention( + gg, nlist_mask, input_r=input_r, sw=sw + ) # shape is [nframes*nloc, self.neei, out_size] + # nfnl x 4 x ng + xyz_scatter = paddle.matmul(rr.transpose([0, 2, 1]), gg) + else: + raise NotImplementedError + + xyz_scatter = xyz_scatter / self.nnei + xyz_scatter_1 = xyz_scatter.transpose([0, 2, 1]) + rot_mat = xyz_scatter_1[:, :, 1:4] + xyz_scatter_2 = xyz_scatter[:, :, 0 : self.axis_neuron] + result = paddle.matmul( + xyz_scatter_1, xyz_scatter_2 + ) # shape is [nframes*nloc, self.filter_neuron[-1], self.axis_neuron] + + return ( + result.reshape([nframes, nloc, self.filter_neuron[-1] * self.axis_neuron]), + gg.reshape([nframes, nloc, self.nnei, self.filter_neuron[-1]]) + if not self.compress + else None, + dmatrix.reshape([nframes, nloc, self.nnei, 4])[..., 1:], + rot_mat.reshape([nframes, nloc, self.filter_neuron[-1], 3]), + sw, + ) + + def has_message_passing(self) -> bool: + """Returns whether the descriptor block has message passing.""" + return False + + def need_sorted_nlist_for_lower(self) -> bool: + """Returns whether the descriptor block needs sorted nlist when using `forward_lower`.""" + return False + + +class NeighborGatedAttention(nn.Layer): + def __init__( + self, + layer_num: int, + nnei: int, + embed_dim: int, + hidden_dim: int, + dotr: bool = False, + do_mask: bool = False, + scaling_factor: float = 1.0, + normalize: bool = True, + temperature: Optional[float] = None, + trainable_ln: bool = True, + ln_eps: float = 1e-5, + smooth: bool = True, + precision: str = DEFAULT_PRECISION, + seed: Optional[Union[int, list[int]]] = None, + ) -> None: + """Construct a neighbor-wise attention net.""" + super().__init__() + self.layer_num = layer_num + self.nnei = nnei + self.embed_dim = embed_dim + self.hidden_dim = hidden_dim + self.dotr = dotr + self.do_mask = do_mask + self.scaling_factor = scaling_factor + self.normalize = normalize + self.temperature = temperature + self.trainable_ln = trainable_ln + self.ln_eps = ln_eps + self.smooth = smooth + self.precision = precision + self.seed = seed + self.network_type = NeighborGatedAttentionLayer + attention_layers = [] + for i in range(self.layer_num): + attention_layers.append( + NeighborGatedAttentionLayer( + nnei, + embed_dim, + hidden_dim, + dotr=dotr, + do_mask=do_mask, + scaling_factor=scaling_factor, + normalize=normalize, + temperature=temperature, + trainable_ln=trainable_ln, + ln_eps=ln_eps, + smooth=smooth, + precision=precision, + seed=child_seed(seed, i), + ) + ) + self.attention_layers = nn.LayerList(attention_layers) + + def forward( + self, + input_G, + nei_mask, + input_r: Optional[paddle.Tensor] = None, + sw: Optional[paddle.Tensor] = None, + ): + """Compute the multi-layer gated self-attention. + + Parameters + ---------- + input_G + inputs with shape: (nf x nloc) x nnei x embed_dim. + nei_mask + neighbor mask, with paddings being 0. shape: (nf x nloc) x nnei. + input_r + normalized radial. shape: (nf x nloc) x nnei x 3. + sw + The smooth switch function. shape: nf x nloc x nnei + """ + out = input_G + for layer in self.attention_layers: + out = layer(out, nei_mask, input_r=input_r, sw=sw) + return out + + def __getitem__(self, key): + if isinstance(key, int): + return self.attention_layers[key] + else: + raise TypeError(key) + + def __setitem__(self, key, value) -> None: + if not isinstance(key, int): + raise TypeError(key) + if isinstance(value, self.network_type): + pass + elif isinstance(value, dict): + value = self.network_type.deserialize(value) + else: + raise TypeError(value) + self.attention_layers[key] = value + + def serialize(self) -> dict: + """Serialize the networks to a dict. + + Returns + ------- + dict + The serialized networks. + """ + return { + "@class": "NeighborGatedAttention", + "@version": 1, + "layer_num": self.layer_num, + "nnei": self.nnei, + "embed_dim": self.embed_dim, + "hidden_dim": self.hidden_dim, + "dotr": self.dotr, + "do_mask": self.do_mask, + "scaling_factor": self.scaling_factor, + "normalize": self.normalize, + "temperature": self.temperature, + "trainable_ln": self.trainable_ln, + "ln_eps": self.ln_eps, + "precision": self.precision, + "attention_layers": [layer.serialize() for layer in self.attention_layers], + } + + @classmethod + def deserialize(cls, data: dict) -> "NeighborGatedAttention": + """Deserialize the networks from a dict. + + Parameters + ---------- + data : dict + The dict to deserialize from. + """ + data = data.copy() + check_version_compatibility(data.pop("@version"), 1, 1) + data.pop("@class") + attention_layers = data.pop("attention_layers") + obj = cls(**data) + for ii, network in enumerate(attention_layers): + obj[ii] = network + return obj + + +class NeighborGatedAttentionLayer(nn.Layer): + def __init__( + self, + nnei: int, + embed_dim: int, + hidden_dim: int, + dotr: bool = False, + do_mask: bool = False, + scaling_factor: float = 1.0, + normalize: bool = True, + temperature: Optional[float] = None, + smooth: bool = True, + trainable_ln: bool = True, + ln_eps: float = 1e-5, + precision: str = DEFAULT_PRECISION, + seed: Optional[Union[int, list[int]]] = None, + ) -> None: + """Construct a neighbor-wise attention layer.""" + super().__init__() + self.nnei = nnei + self.embed_dim = embed_dim + self.hidden_dim = hidden_dim + self.dotr = dotr + self.do_mask = do_mask + self.scaling_factor = scaling_factor + self.normalize = normalize + self.temperature = temperature + self.precision = precision + self.trainable_ln = trainable_ln + self.ln_eps = ln_eps + self.seed = seed + self.attention_layer = GatedAttentionLayer( + nnei, + embed_dim, + hidden_dim, + dotr=dotr, + do_mask=do_mask, + scaling_factor=scaling_factor, + normalize=normalize, + temperature=temperature, + smooth=smooth, + precision=precision, + seed=child_seed(seed, 0), + ) + self.attn_layer_norm = LayerNorm( + self.embed_dim, + eps=ln_eps, + trainable=trainable_ln, + precision=precision, + seed=child_seed(seed, 1), + ) + + def forward( + self, + x, + nei_mask, + input_r: Optional[paddle.Tensor] = None, + sw: Optional[paddle.Tensor] = None, + ): + residual = x + x, _ = self.attention_layer(x, nei_mask, input_r=input_r, sw=sw) + x = residual + x + x = self.attn_layer_norm(x) + return x + + def serialize(self) -> dict: + """Serialize the networks to a dict. + + Returns + ------- + dict + The serialized networks. + """ + return { + "nnei": self.nnei, + "embed_dim": self.embed_dim, + "hidden_dim": self.hidden_dim, + "dotr": self.dotr, + "do_mask": self.do_mask, + "scaling_factor": self.scaling_factor, + "normalize": self.normalize, + "temperature": self.temperature, + "trainable_ln": self.trainable_ln, + "ln_eps": self.ln_eps, + "precision": self.precision, + "attention_layer": self.attention_layer.serialize(), + "attn_layer_norm": self.attn_layer_norm.serialize(), + } + + @classmethod + def deserialize(cls, data: dict) -> "NeighborGatedAttentionLayer": + """Deserialize the networks from a dict. + + Parameters + ---------- + data : dict + The dict to deserialize from. + """ + data = data.copy() + attention_layer = data.pop("attention_layer") + attn_layer_norm = data.pop("attn_layer_norm") + obj = cls(**data) + obj.attention_layer = GatedAttentionLayer.deserialize(attention_layer) + obj.attn_layer_norm = LayerNorm.deserialize(attn_layer_norm) + return obj + + +class GatedAttentionLayer(nn.Layer): + def __init__( + self, + nnei: int, + embed_dim: int, + hidden_dim: int, + num_heads: int = 1, + dotr: bool = False, + do_mask: bool = False, + scaling_factor: float = 1.0, + normalize: bool = True, + temperature: Optional[float] = None, + bias: bool = True, + smooth: bool = True, + precision: str = DEFAULT_PRECISION, + seed: Optional[Union[int, list[int]]] = None, + ) -> None: + """Construct a multi-head neighbor-wise attention net.""" + super().__init__() + assert hidden_dim % num_heads == 0, "hidden_dim must be divisible by num_heads" + self.nnei = nnei + self.embed_dim = embed_dim + self.hidden_dim = hidden_dim + self.num_heads = num_heads + self.head_dim = hidden_dim // num_heads + self.dotr = dotr + self.do_mask = do_mask + self.bias = bias + self.smooth = smooth + self.scaling_factor = scaling_factor + self.temperature = temperature + self.precision = precision + self.seed = seed + self.scaling = ( + (self.head_dim * scaling_factor) ** -0.5 + if temperature is None + else temperature + ) + self.normalize = normalize + self.in_proj = MLPLayer( + embed_dim, + hidden_dim * 3, + bias=bias, + use_timestep=False, + bavg=0.0, + stddev=1.0, + precision=precision, + seed=child_seed(seed, 0), + ) + self.out_proj = MLPLayer( + hidden_dim, + embed_dim, + bias=bias, + use_timestep=False, + bavg=0.0, + stddev=1.0, + precision=precision, + seed=child_seed(seed, 1), + ) + + def forward( + self, + query, + nei_mask, + input_r: Optional[paddle.Tensor] = None, + sw: Optional[paddle.Tensor] = None, + attnw_shift: float = 20.0, + ): + """Compute the multi-head gated self-attention. + + Parameters + ---------- + query + inputs with shape: (nf x nloc) x nnei x embed_dim. + nei_mask + neighbor mask, with paddings being 0. shape: (nf x nloc) x nnei. + input_r + normalized radial. shape: (nf x nloc) x nnei x 3. + sw + The smooth switch function. shape: (nf x nloc) x nnei + attnw_shift : float + The attention weight shift to preserve smoothness when doing padding before softmax. + """ + q, k, v = self.in_proj(query).chunk(3, axis=-1) + + # Reshape for multi-head attention: (nf x nloc) x num_heads x nnei x head_dim + q = q.reshape([-1, self.nnei, self.num_heads, self.head_dim]).transpose( + [0, 2, 1, 3] + ) + k = k.reshape([-1, self.nnei, self.num_heads, self.head_dim]).transpose( + [0, 2, 1, 3] + ) + v = v.reshape([-1, self.nnei, self.num_heads, self.head_dim]).transpose( + [0, 2, 1, 3] + ) + + if self.normalize: + q = paddle_func.normalize(q, axis=-1) + k = paddle_func.normalize(k, axis=-1) + v = paddle_func.normalize(v, axis=-1) + + q = q * self.scaling + # (nf x nloc) x num_heads x head_dim x nnei + k = k.transpose([0, 1, 3, 2]) + + # Compute attention scores + # (nf x nloc) x num_heads x nnei x nnei + attn_weights = paddle.matmul(q, k) + # (nf x nloc) x nnei + nei_mask = nei_mask.reshape([-1, self.nnei]) + + if self.smooth: + assert sw is not None + # (nf x nloc) x 1 x nnei + sw = sw.reshape([-1, 1, self.nnei]) + attn_weights = (attn_weights + attnw_shift) * sw[:, :, :, None] * sw[ + :, :, None, : + ] - attnw_shift + else: + # (nf x nloc) x 1 x 1 x nnei + attn_weights = attn_weights.masked_fill( + ~nei_mask.unsqueeze(1).unsqueeze(1), float("-inf") + ) + + attn_weights = paddle_func.softmax(attn_weights, axis=-1) + attn_weights = attn_weights.masked_fill( + ~nei_mask.unsqueeze(1).unsqueeze(-1), 0.0 + ) + if self.smooth: + assert sw is not None + attn_weights = attn_weights * sw[:, :, :, None] * sw[:, :, None, :] + + if self.dotr: + # (nf x nloc) x nnei x 3 + assert input_r is not None, "input_r must be provided when dotr is True!" + # (nf x nloc) x 1 x nnei x nnei + angular_weight = paddle.matmul( + input_r, input_r.transpose([0, 2, 1]) + ).reshape([-1, 1, self.nnei, self.nnei]) + attn_weights = attn_weights * angular_weight + + # Apply attention to values + # (nf x nloc) x nnei x (num_heads x head_dim) + o = ( + paddle.matmul(attn_weights, v) + .transpose([0, 2, 1, 3]) + .reshape([-1, self.nnei, self.hidden_dim]) + ) + output = self.out_proj(o) + return output, attn_weights + + def serialize(self) -> dict: + """Serialize the networks to a dict. + + Returns + ------- + dict + The serialized networks. + """ + return { + "nnei": self.nnei, + "embed_dim": self.embed_dim, + "hidden_dim": self.hidden_dim, + "num_heads": self.num_heads, + "dotr": self.dotr, + "do_mask": self.do_mask, + "scaling_factor": self.scaling_factor, + "normalize": self.normalize, + "temperature": self.temperature, + "bias": self.bias, + "smooth": self.smooth, + "precision": self.precision, + "in_proj": self.in_proj.serialize(), + "out_proj": self.out_proj.serialize(), + } + + @classmethod + def deserialize(cls, data: dict) -> "GatedAttentionLayer": + """Deserialize the networks from a dict. + + Parameters + ---------- + data : dict + The dict to deserialize from. + """ + data = data.copy() + in_proj = data.pop("in_proj") + out_proj = data.pop("out_proj") + obj = cls(**data) + obj.in_proj = MLPLayer.deserialize(in_proj) + obj.out_proj = MLPLayer.deserialize(out_proj) + return obj diff --git a/deepmd/pd/model/model/ener_model.py b/deepmd/pd/model/model/ener_model.py index 3f3db4a527..a5b1b9d4b3 100644 --- a/deepmd/pd/model/model/ener_model.py +++ b/deepmd/pd/model/model/ener_model.py @@ -1,7 +1,4 @@ # SPDX-License-Identifier: LGPL-3.0-or-later -from copy import ( - deepcopy, -) from typing import ( Optional, ) @@ -33,26 +30,26 @@ def __init__( self, *args, **kwargs, - ): + ) -> None: DPModelCommon.__init__(self) DPEnergyModel_.__init__(self, *args, **kwargs) def translated_output_def(self): out_def_data = self.model_output_def().get_data() output_def = { - "atom_energy": deepcopy(out_def_data["energy"]), - "energy": deepcopy(out_def_data["energy_redu"]), + "atom_energy": out_def_data["energy"], + "energy": out_def_data["energy_redu"], } if self.do_grad_r("energy"): - output_def["force"] = deepcopy(out_def_data["energy_derv_r"]) + output_def["force"] = out_def_data["energy_derv_r"] output_def["force"].squeeze(-2) if self.do_grad_c("energy"): - output_def["virial"] = deepcopy(out_def_data["energy_derv_c_redu"]) + output_def["virial"] = out_def_data["energy_derv_c_redu"] output_def["virial"].squeeze(-2) - output_def["atom_virial"] = deepcopy(out_def_data["energy_derv_c"]) + output_def["atom_virial"] = out_def_data["energy_derv_c"] output_def["atom_virial"].squeeze(-3) if "mask" in out_def_data: - output_def["mask"] = deepcopy(out_def_data["mask"]) + output_def["mask"] = out_def_data["mask"] return output_def def forward( diff --git a/deepmd/pd/model/model/make_model.py b/deepmd/pd/model/model/make_model.py index d5c5c6bd41..2b9a4b5bec 100644 --- a/deepmd/pd/model/model/make_model.py +++ b/deepmd/pd/model/model/make_model.py @@ -24,9 +24,6 @@ communicate_extended_output, fit_output_to_model_output, ) -from deepmd.pd.utils import ( - decomp, -) from deepmd.pd.utils.env import ( GLOBAL_PD_ENER_FLOAT_PRECISION, GLOBAL_PD_FLOAT_PRECISION, @@ -72,7 +69,7 @@ def __init__( # underscore to prevent conflict with normal inputs atomic_model_: Optional[T_AtomicModel] = None, **kwargs, - ): + ) -> None: super().__init__(*args, **kwargs) if atomic_model_ is not None: self.atomic_model: T_AtomicModel = atomic_model_ @@ -176,7 +173,9 @@ def forward_common( atype, self.get_rcut(), self.get_sel(), - mixed_types=self.mixed_types(), + # types will be distinguished in the lower interface, + # so it doesn't need to be distinguished here + mixed_types=True, box=bb, ) model_predict_lower = self.forward_common_lower( @@ -411,7 +410,7 @@ def format_nlist( Returns ------- - formatted_nlist + formated_nlist the formatted nlist. """ @@ -459,18 +458,17 @@ def _format_nlist( coord0 = extended_coord[:, :n_nloc, :] # nf x (nloc x nnei) x 3 index = nlist.reshape([n_nf, n_nloc * n_nnei, 1]).expand([-1, -1, 3]) - coord1 = decomp.take_along_axis(extended_coord, axis=1, indices=index) + coord1 = paddle.take_along_axis(extended_coord, axis=1, indices=index) # nf x nloc x nnei x 3 coord1 = coord1.reshape([n_nf, n_nloc, n_nnei, 3]) # nf x nloc x nnei - # rr = paddle.linalg.norm(coord0[:, :, None, :] - coord1, axis=-1) - rr = decomp.norm(coord0[:, :, None, :] - coord1, axis=-1) + rr = paddle.linalg.norm(coord0[:, :, None, :] - coord1, axis=-1) rr = paddle.where(m_real_nei, rr, float("inf")) rr, nlist_mapping = ( paddle.sort(rr, axis=-1), paddle.argsort(rr, axis=-1), ) - nlist = decomp.take_along_axis(nlist, axis=2, indices=nlist_mapping) + nlist = paddle.take_along_axis(nlist, axis=2, indices=nlist_mapping) nlist = paddle.where(rr > rcut, paddle.full_like(nlist, -1), nlist) nlist = nlist[..., :nnei] else: # not extra_nlist_sort and n_nnei <= nnei: diff --git a/deepmd/pd/model/network/layernorm.py b/deepmd/pd/model/network/layernorm.py new file mode 100644 index 0000000000..4d37b208f9 --- /dev/null +++ b/deepmd/pd/model/network/layernorm.py @@ -0,0 +1,165 @@ +# SPDX-License-Identifier: LGPL-3.0-or-later +from typing import ( + Optional, + Union, +) + +import numpy as np +import paddle +import paddle.nn as nn + +from deepmd.dpmodel.utils.network import LayerNorm as DPLayerNorm +from deepmd.pd.model.network.init import ( + normal_, + ones_, + zeros_, +) +from deepmd.pd.utils import ( + decomp, + env, +) +from deepmd.pd.utils.env import ( + DEFAULT_PRECISION, + PRECISION_DICT, +) +from deepmd.pd.utils.utils import ( + get_generator, + to_numpy_array, + to_paddle_tensor, +) + +device = env.DEVICE + + +def empty_t(shape, precision): + return paddle.empty(shape, dtype=precision).to(device=device) + + +class LayerNorm(nn.Layer): + def __init__( + self, + num_in, + eps: float = 1e-5, + uni_init: bool = True, + bavg: float = 0.0, + stddev: float = 1.0, + precision: str = DEFAULT_PRECISION, + trainable: bool = True, + seed: Optional[Union[int, list[int]]] = None, + ): + super().__init__() + self.eps = eps + self.uni_init = uni_init + self.num_in = num_in + self.precision = precision + self.prec = PRECISION_DICT[self.precision] + self.matrix = self.create_parameter( + shape=[num_in], + dtype=self.prec, + default_initializer=nn.initializer.Assign( + empty_t((num_in,), self.prec), + ), + ) + self.bias = self.create_parameter( + shape=[num_in], + dtype=self.prec, + default_initializer=nn.initializer.Assign(empty_t([num_in], self.prec)), + ) + random_generator = get_generator(seed) + if self.uni_init: + ones_(self.matrix.data) + zeros_(self.bias.data) + else: + normal_(self.bias.data, mean=bavg, std=stddev, generator=random_generator) + normal_( + self.matrix.data, + std=stddev / np.sqrt(self.num_in), + generator=random_generator, + ) + self.trainable = trainable + if not self.trainable: + self.matrix.stop_gradient = True + self.bias.stop_gradient = True + + def dim_out(self) -> int: + return self.matrix.shape[0] + + def forward( + self, + xx: paddle.Tensor, + ) -> paddle.Tensor: + """One Layer Norm used by DP model. + + Parameters + ---------- + xx : paddle.Tensor + The input of index. + + Returns + ------- + yy: paddle.Tensor + The output. + """ + # if xx.numel() > 0: + if decomp.numel(xx): + variance, mean = ( + paddle.var(xx, axis=-1, unbiased=False, keepdim=True), + paddle.mean(xx, axis=-1, keepdim=True), + ) + yy = (xx - mean) / paddle.sqrt(variance + self.eps) + else: + yy = xx + if self.matrix is not None and self.bias is not None: + yy = yy * self.matrix + self.bias + return yy + + def serialize(self) -> dict: + """Serialize the layer to a dict. + + Returns + ------- + dict + The serialized layer. + """ + nl = DPLayerNorm( + self.matrix.shape[0], + eps=self.eps, + trainable=self.trainable, + precision=self.precision, + ) + nl.w = to_numpy_array(self.matrix) + nl.b = to_numpy_array(self.bias) + data = nl.serialize() + return data + + @classmethod + def deserialize(cls, data: dict) -> "LayerNorm": + """Deserialize the layer from a dict. + + Parameters + ---------- + data : dict + The dict to deserialize from. + """ + nl = DPLayerNorm.deserialize(data) + obj = cls( + nl["matrix"].shape[0], + eps=nl["eps"], + trainable=nl["trainable"], + precision=nl["precision"], + ) + prec = PRECISION_DICT[obj.precision] + + def check_load_param(ss): + if nl[ss] is not None: + tensor = to_paddle_tensor(nl[ss]) + return paddle.create_parameter( + tensor.shape, + dtype=tensor.dtype, + default_initializer=nn.initializer.Assign(tensor), + ) + return None + + obj.matrix = check_load_param("matrix") + obj.bias = check_load_param("bias") + return obj diff --git a/deepmd/pd/model/network/network.py b/deepmd/pd/model/network/network.py index f118c234ab..1974e526a0 100644 --- a/deepmd/pd/model/network/network.py +++ b/deepmd/pd/model/network/network.py @@ -45,7 +45,7 @@ def __init__( use_econf_tebd=False, use_tebd_bias: bool = False, type_map=None, - ): + ) -> None: """Construct a type embedding net.""" super().__init__() self.type_nums = type_nums @@ -80,11 +80,28 @@ def forward(self, atype): """ return self.embedding(atype.place)[atype] - def share_params(self, base_class, shared_level, resume=False): + def get_full_embedding(self, device: str): + """ + Get the type embeddings of all types. + + Parameters + ---------- + device : str + The device on which to perform the computation. + + Returns + ------- + type_embedding : paddle.Tensor + The full type embeddings of all types. The last index corresponds to the zero padding. + Shape: (ntypes + 1) x tebd_dim + """ + return self.embedding(device) + + def share_params(self, base_class, shared_level, resume=False) -> None: """ Share the parameters of self to the base_class with shared_level during multitask training. If not start from checkpoint (resume is False), - some seperated parameters (e.g. mean and stddev) will be re-calculated across different classes. + some separated parameters (e.g. mean and stddev) will be re-calculated across different classes. """ assert ( self.__class__ == base_class.__class__ @@ -148,7 +165,7 @@ def __init__( use_econf_tebd: bool = False, use_tebd_bias: bool = False, type_map: Optional[list[str]] = None, - ): + ) -> None: """Construct a type embedding net.""" super().__init__() self.ntypes = ntypes diff --git a/deepmd/pd/model/task/fitting.py b/deepmd/pd/model/task/fitting.py index 375cf834cc..d9db44aff5 100644 --- a/deepmd/pd/model/task/fitting.py +++ b/deepmd/pd/model/task/fitting.py @@ -1,5 +1,4 @@ # SPDX-License-Identifier: LGPL-3.0-or-later -import copy import logging from abc import ( abstractmethod, @@ -55,7 +54,7 @@ def __new__(cls, *args, **kwargs): return BaseFitting.__new__(BaseFitting, *args, **kwargs) return super().__new__(cls) - def share_params(self, base_class, shared_level, resume=False): + def share_params(self, base_class, shared_level, resume=False) -> None: """ Share the parameters of self to the base_class with shared_level during multitask training. If not start from checkpoint (resume is False), @@ -65,14 +64,7 @@ def share_params(self, base_class, shared_level, resume=False): self.__class__ == base_class.__class__ ), "Only fitting nets of the same type can share params!" if shared_level == 0: - # link buffers - if hasattr(self, "bias_atom_e"): - self.bias_atom_e = base_class.bias_atom_e - # the following will successfully link all the params except buffers, which need manually link. - for item in self._sub_layers: - self._sub_layers[item] = base_class._sub_layers[item] - elif shared_level == 1: - # only not share the bias_atom_e + # only not share the bias_atom_e and the case_embd # the following will successfully link all the params except buffers, which need manually link. for item in self._sub_layers: self._sub_layers[item] = base_class._sub_layers[item] @@ -104,7 +96,6 @@ class GeneralFitting(Fitting): numb_aparam : int Number of atomic parameters. dim_case_embd : int - (Not supported yet) Dimension of case specific embedding. activation_function : str Activation function. @@ -155,7 +146,7 @@ def __init__( type_map: Optional[list[str]] = None, use_aparam_as_mask: bool = False, **kwargs, - ): + ) -> None: super().__init__() self.var_name = var_name self.ntypes = ntypes @@ -166,9 +157,6 @@ def __init__( self.numb_fparam = numb_fparam self.numb_aparam = numb_aparam self.dim_case_embd = dim_case_embd - if dim_case_embd > 0: - raise ValueError("dim_case_embd is not supported yet in PaddlePaddle.") - self.case_embd = None self.activation_function = activation_function self.precision = precision self.prec = PRECISION_DICT[self.precision] @@ -189,7 +177,9 @@ def __init__( # init constants if bias_atom_e is None: bias_atom_e = np.zeros([self.ntypes, net_dim_out], dtype=np.float64) - bias_atom_e = paddle.to_tensor(bias_atom_e, dtype=self.prec).to(device=device) + bias_atom_e = paddle.to_tensor( + bias_atom_e, dtype=env.GLOBAL_PD_FLOAT_PRECISION, place=device + ) bias_atom_e = bias_atom_e.reshape([self.ntypes, net_dim_out]) if not self.mixed_types: assert self.ntypes == bias_atom_e.shape[0], "Element count mismatches!" @@ -218,10 +208,20 @@ def __init__( else: self.aparam_avg, self.aparam_inv_std = None, None + if self.dim_case_embd > 0: + self.register_buffer( + "case_embd", + paddle.zeros(self.dim_case_embd, dtype=self.prec, place=device), + # paddle.eye(self.dim_case_embd, dtype=self.prec, place=device)[0], + ) + else: + self.case_embd = None + in_dim = ( self.dim_descrpt + self.numb_fparam + (0 if self.use_aparam_as_mask else self.numb_aparam) + + self.dim_case_embd ) self.filter_layers = NetworkCollection( @@ -249,7 +249,7 @@ def __init__( def reinit_exclude( self, exclude_types: list[int] = [], - ): + ) -> None: self.exclude_types = exclude_types self.emask = AtomExcludeMask(self.ntypes, self.exclude_types) @@ -299,7 +299,7 @@ def serialize(self) -> dict: "exclude_types": self.exclude_types, "@variables": { "bias_atom_e": to_numpy_array(self.bias_atom_e), - "case_embd": None, + "case_embd": to_numpy_array(self.case_embd), "fparam_avg": to_numpy_array(self.fparam_avg), "fparam_inv_std": to_numpy_array(self.fparam_inv_std), "aparam_avg": to_numpy_array(self.aparam_avg), @@ -321,7 +321,7 @@ def serialize(self) -> dict: @classmethod def deserialize(cls, data: dict) -> "GeneralFitting": - data = copy.deepcopy(data) + data = data.copy() variables = data.pop("@variables") nets = data.pop("nets") obj = cls(**data) @@ -364,9 +364,11 @@ def set_case_embd(self, case_idx: int): Set the case embedding of this fitting net by the given case_idx, typically concatenated with the output of the descriptor and fed into the fitting net. """ - raise NotImplementedError("set_case_embd is not supported yet in PaddlePaddle.") + self.case_embd = paddle.eye(self.dim_case_embd, dtype=self.prec).to(device)[ + case_idx + ] - def __setitem__(self, key, value): + def __setitem__(self, key, value) -> None: if key in ["bias_atom_e"]: value = value.reshape([self.ntypes, self._net_out_dim()]) self.bias_atom_e = value @@ -424,7 +426,11 @@ def _forward_common( fparam: Optional[paddle.Tensor] = None, aparam: Optional[paddle.Tensor] = None, ): - xx = descriptor + # cast the input to internal precsion + xx = descriptor.to(self.prec) + fparam = fparam.to(self.prec) if fparam is not None else None + aparam = aparam.to(self.prec) if aparam is not None else None + if self.remove_vaccum_contribution is not None: # TODO: compute the input for vaccm when remove_vaccum_contribution is set # Ideally, the input for vacuum should be computed; @@ -492,15 +498,30 @@ def _forward_common( axis=-1, ) + if self.dim_case_embd > 0: + assert self.case_embd is not None + case_embd = paddle.tile(self.case_embd.reshape([1, 1, -1]), [nf, nloc, 1]) + xx = paddle.concat( + [xx, case_embd], + axis=-1, + ) + if xx_zeros is not None: + xx_zeros = paddle.concat( + [xx_zeros, case_embd], + axis=-1, + ) + outs = paddle.zeros( (nf, nloc, net_dim_out), dtype=env.GLOBAL_PD_FLOAT_PRECISION, - ).to(device=descriptor.place) # jit assertion + ).to(device=descriptor.place) if self.mixed_types: atom_property = self.filter_layers.networks[0](xx) + self.bias_atom_e[atype] if xx_zeros is not None: atom_property -= self.filter_layers.networks[0](xx_zeros) - outs = outs + atom_property # Shape is [nframes, natoms[0], net_dim_out] + outs = ( + outs + atom_property + self.bias_atom_e[atype].to(self.prec) + ) # Shape is [nframes, natoms[0], net_dim_out] else: for type_i, ll in enumerate(self.filter_layers.networks): mask = (atype == type_i).unsqueeze(-1) @@ -516,12 +537,12 @@ def _forward_common( ): atom_property -= ll(xx_zeros) atom_property = atom_property + self.bias_atom_e[type_i] - atom_property = atom_property * mask.astype(atom_property.dtype) + atom_property = paddle.where(mask, atom_property, 0.0) outs = ( outs + atom_property ) # Shape is [nframes, natoms[0], net_dim_out] # nf x nloc - mask = self.emask(atype) + mask = self.emask(atype).to("bool") # nf x nloc x nod - outs = outs * mask[:, :, None].astype(outs.dtype) + outs = paddle.where(mask[:, :, None], outs, 0.0) return {self.var_name: outs.astype(env.GLOBAL_PD_FLOAT_PRECISION)} diff --git a/deepmd/pd/train/training.py b/deepmd/pd/train/training.py index 17d369751f..65e35a1c4b 100644 --- a/deepmd/pd/train/training.py +++ b/deepmd/pd/train/training.py @@ -3,9 +3,6 @@ import functools import logging import time -from contextlib import ( - contextmanager, -) from copy import ( deepcopy, ) @@ -53,7 +50,7 @@ ) from deepmd.pd.utils.dataloader import ( BufferedIterator, - get_weighted_sampler, + get_sampler_from_params, ) from deepmd.pd.utils.env import ( DEVICE, @@ -66,6 +63,7 @@ make_stat_input, ) from deepmd.pd.utils.utils import ( + nvprof_context, to_numpy_array, ) from deepmd.utils.data import ( @@ -87,6 +85,7 @@ def format_training_message( wall_time: float, eta: Optional[int] = None, ): + """Format a training message.""" msg = f"batch {batch:7d}: " f"total wall time = {wall_time:.2f} s" if isinstance(eta, int): msg += f", eta = {datetime.timedelta(seconds=int(eta))!s}" @@ -107,7 +106,7 @@ def __init__( shared_links=None, finetune_links=None, init_frz_model=None, - ): + ) -> None: """Construct a DeePMD trainer. Args: @@ -169,19 +168,7 @@ def get_opt_param(params): def get_data_loader(_training_data, _validation_data, _training_params): def get_dataloader_and_buffer(_data, _params): - if "auto_prob" in _training_params["training_data"]: - _sampler = get_weighted_sampler( - _data, _params["training_data"]["auto_prob"] - ) - elif "sys_probs" in _training_params["training_data"]: - _sampler = get_weighted_sampler( - _data, - _params["training_data"]["sys_probs"], - sys_prob=True, - ) - else: - _sampler = get_weighted_sampler(_data, "prob_sys_size") - + _sampler = get_sampler_from_params(_data, _params) if _sampler is None: log.warning( "Sampler not specified!" @@ -202,14 +189,16 @@ def get_dataloader_and_buffer(_data, _params): return _dataloader, _data_buffered training_dataloader, training_data_buffered = get_dataloader_and_buffer( - _training_data, _training_params + _training_data, _training_params["training_data"] ) if _validation_data is not None: ( validation_dataloader, validation_data_buffered, - ) = get_dataloader_and_buffer(_validation_data, _training_params) + ) = get_dataloader_and_buffer( + _validation_data, _training_params["validation_data"] + ) valid_numb_batch = _training_params["validation_data"].get( "numb_btch", 1 ) @@ -284,7 +273,7 @@ def get_lr(lr_params): self.opt_type, self.opt_param = get_opt_param(training_params) # Model - self.model = get_model_for_wrapper(model_params) + self.model = get_model_for_wrapper(model_params, resuming=resuming) # Loss if not self.multi_task: @@ -496,7 +485,7 @@ def collect_single_finetune_params( _new_state_dict, _origin_state_dict, _random_state_dict, - ): + ) -> None: _new_fitting = _finetune_rule_single.get_random_fitting() _model_key_from = _finetune_rule_single.get_model_branch() target_keys = [ @@ -669,10 +658,11 @@ def run(self): core.nvprof_start() core.nvprof_enable_record_event() - def step(_step_id, task_key="Default"): + def step(_step_id, task_key="Default") -> None: # Paddle Profiler if enable_profiling: core.nvprof_nvtx_push(f"Training step {_step_id}") + self.wrapper.train() if isinstance(self.lr_exp, dict): _lr = self.lr_exp[task_key] @@ -707,20 +697,17 @@ def step(_step_id, task_key="Default"): if self.gradient_max_norm > 0.0: with nvprof_context(enable_profiling, "Gradient clip"): - grad_norm = paddle.nn.utils.clip_grad_norm_( - self.wrapper.parameters(), self.gradient_max_norm + paddle.nn.utils.clip_grad_norm_( + self.wrapper.parameters(), + self.gradient_max_norm, + error_if_nonfinite=True, ) - if not paddle.isfinite(grad_norm).all(): - # check local gradnorm single GPU case, trigger NanDetector - raise FloatingPointError("gradients are Nan/Inf") with nvprof_context(enable_profiling, "Adam update"): self.optimizer.step() self.scheduler.step() - if enable_profiling: - core.nvprof_nvtx_pop() else: raise ValueError(f"Not supported optimizer type '{self.opt_type}'") @@ -729,7 +716,7 @@ def step(_step_id, task_key="Default"): if self.display_in_training and ( display_step_id % self.disp_freq == 0 or display_step_id == 1 ): - self.wrapper.eval() + self.wrapper.eval() # Will set to train mode before fininshing validation def log_loss_train(_loss, _more_loss, _task_key="Default"): results = {} @@ -835,6 +822,7 @@ def log_loss_valid(_task_key="Default"): learning_rate=None, ) ) + self.wrapper.train() current_time = time.time() train_time = current_time - self.t0 @@ -888,12 +876,16 @@ def log_loss_valid(_task_key="Default"): display_step_id % self.tensorboard_freq == 0 or display_step_id == 1 ): writer.add_scalar(f"{task_key}/lr", cur_lr, display_step_id) - writer.add_scalar(f"{task_key}/loss", loss, display_step_id) + writer.add_scalar(f"{task_key}/loss", loss.item(), display_step_id) for item in more_loss: writer.add_scalar( - f"{task_key}/{item}", more_loss[item].item(), _step_id + f"{task_key}/{item}", more_loss[item].item(), display_step_id ) + if enable_profiling: + core.nvprof_nvtx_pop() + + self.wrapper.train() self.t0 = time.time() self.total_train_time = 0.0 for step_id in range(self.num_steps): @@ -989,7 +981,7 @@ def log_loss_valid(_task_key="Default"): "files, which can be viewd in NVIDIA Nsight Systems software" ) - def save_model(self, save_path, lr=0.0, step=0): + def save_model(self, save_path, lr=0.0, step=0) -> None: module = ( self.wrapper.module if dist.is_available() and dist.is_initialized() @@ -1085,7 +1077,7 @@ def get_data(self, is_train=True, task_key="Default"): log_dict["sid"] = batch_data["sid"] return input_dict, label_dict, log_dict - def print_header(self, fout, train_results, valid_results): + def print_header(self, fout, train_results, valid_results) -> None: train_keys = sorted(train_results.keys()) print_str = "" print_str += "# {:5s}".format("step") @@ -1116,7 +1108,9 @@ def print_header(self, fout, train_results, valid_results): fout.write(print_str) fout.flush() - def print_on_training(self, fout, step_id, cur_lr, train_results, valid_results): + def print_on_training( + self, fout, step_id, cur_lr, train_results, valid_results + ) -> None: train_keys = sorted(train_results.keys()) print_str = "" print_str += f"{step_id:7d}" @@ -1191,7 +1185,7 @@ def get_single_model( return model -def get_model_for_wrapper(_model_params): +def get_model_for_wrapper(_model_params, resuming=False): if "model_dict" not in _model_params: _model = get_single_model( _model_params, @@ -1199,13 +1193,41 @@ def get_model_for_wrapper(_model_params): else: _model = {} model_keys = list(_model_params["model_dict"]) + do_case_embd, case_embd_index = get_case_embd_config(_model_params) for _model_key in model_keys: _model[_model_key] = get_single_model( _model_params["model_dict"][_model_key], ) + if do_case_embd and not resuming: + # only set case_embd when from scratch multitask training + _model[_model_key].set_case_embd(case_embd_index[_model_key]) return _model +def get_case_embd_config(_model_params): + assert ( + "model_dict" in _model_params + ), "Only support setting case embedding for multi-task model!" + model_keys = list(_model_params["model_dict"]) + sorted_model_keys = sorted(model_keys) + numb_case_embd_list = [ + _model_params["model_dict"][model_key] + .get("fitting_net", {}) + .get("dim_case_embd", 0) + for model_key in sorted_model_keys + ] + if not all(item == numb_case_embd_list[0] for item in numb_case_embd_list): + raise ValueError( + f"All models must have the same dimension of case embedding, while the settings are: {numb_case_embd_list}" + ) + if numb_case_embd_list[0] == 0: + return False, {} + case_embd_index = { + model_key: idx for idx, model_key in enumerate(sorted_model_keys) + } + return True, case_embd_index + + def model_change_out_bias( _model, _sample_func, @@ -1225,16 +1247,3 @@ def model_change_out_bias( f"to {to_numpy_array(new_bias).reshape(-1)!s}." ) return _model - - -@contextmanager -def nvprof_context(enable_profiler: bool, name: str): - if enable_profiler: - core.nvprof_nvtx_push(name) - - try: - yield - - finally: - if enable_profiler: - core.nvprof_nvtx_pop() diff --git a/deepmd/pd/train/wrapper.py b/deepmd/pd/train/wrapper.py index c3643f8372..2263a6e9b9 100644 --- a/deepmd/pd/train/wrapper.py +++ b/deepmd/pd/train/wrapper.py @@ -26,7 +26,7 @@ def __init__( loss: paddle.nn.Layer | dict = None, model_params=None, shared_links=None, - ): + ) -> None: """Construct a DeePMD model wrapper. Args: @@ -64,7 +64,7 @@ def __init__( self.loss[task_key] = loss[task_key] self.inference_only = self.loss is None - def share_params(self, shared_links, resume=False): + def share_params(self, shared_links, resume=False) -> None: """ Share the parameters of classes following rules defined in shared_links during multitask training. If not start from checkpoint (resume is False), @@ -111,8 +111,10 @@ def share_params(self, shared_links, resume=False): f"Shared params of {model_key_base}.{class_type_base} and {model_key_link}.{class_type_link}!" ) else: - if hasattr(self.model[model_key_base], class_type_base): - base_class = self.model[model_key_base].__getattr__(class_type_base) + if hasattr(self.model[model_key_base].atomic_model, class_type_base): + base_class = self.model[model_key_base].atomic_model.__getattr__( + class_type_base + ) for link_item in shared_links[shared_item]["links"][1:]: class_type_link = link_item["shared_type"] model_key_link = link_item["model_key"] @@ -123,9 +125,9 @@ def share_params(self, shared_links, resume=False): assert ( class_type_base == class_type_link ), f"Class type mismatched: {class_type_base} vs {class_type_link}!" - link_class = self.model[model_key_link].__getattr__( - class_type_link - ) + link_class = self.model[ + model_key_link + ].atomic_model.__getattr__(class_type_link) link_class.share_params( base_class, shared_level_link, resume=resume ) diff --git a/deepmd/pd/utils/dataloader.py b/deepmd/pd/utils/dataloader.py index 7a2bf4fe9c..9d59ea0da7 100644 --- a/deepmd/pd/utils/dataloader.py +++ b/deepmd/pd/utils/dataloader.py @@ -183,6 +183,7 @@ def __next__(self): return next(self.item) self.iters = [] + for item in self.dataloaders: self.iters.append(LazyIter(item)) @@ -196,7 +197,7 @@ def set_noise(self, noise_settings): for system in self.systems: system.set_noise(noise_settings) - def __len__(self): + def __len__(self) -> int: return len(self.dataloaders) def __getitem__(self, idx): @@ -219,19 +220,21 @@ def print_summary( name: str, prob: list[float], ): - print_summary( - name, - len(self.systems), - [ss.system for ss in self.systems], - [ss._natoms for ss in self.systems], - self.batch_sizes, - [ - ss._data_system.get_sys_numb_batch(self.batch_sizes[ii]) - for ii, ss in enumerate(self.systems) - ], - prob, - [ss._data_system.pbc for ss in self.systems], - ) + rank = dist.get_rank() if dist.is_initialized() else 0 + if rank == 0: + print_summary( + name, + len(self.systems), + [ss.system for ss in self.systems], + [ss._natoms for ss in self.systems], + self.batch_sizes, + [ + ss._data_system.get_sys_numb_batch(self.batch_sizes[ii]) + for ii, ss in enumerate(self.systems) + ], + prob, + [ss._data_system.pbc for ss in self.systems], + ) _sentinel = object() @@ -239,13 +242,13 @@ def print_summary( class BackgroundConsumer(Thread): - def __init__(self, queue, source, max_len): + def __init__(self, queue, source, max_len) -> None: Thread.__init__(self) self._queue = queue self._source = source # Main DL iterator self._max_len = max_len # - def run(self): + def run(self) -> None: for item in self._source: self._queue.put(item) # Blocking if the queue is full @@ -254,7 +257,7 @@ def run(self): class BufferedIterator: - def __init__(self, iterable): + def __init__(self, iterable) -> None: self._queue = queue.Queue(QUEUESIZE) self._iterable = iterable self._consumer = None @@ -263,7 +266,7 @@ def __init__(self, iterable): self.warning_time = None self.total = len(iterable) - def _create_consumer(self): + def _create_consumer(self) -> None: self._consumer = BackgroundConsumer(self._queue, self._iterable, self.total) self._consumer.daemon = True self._consumer.start() @@ -271,7 +274,7 @@ def _create_consumer(self): def __iter__(self): return self - def __len__(self): + def __len__(self) -> int: return self.total def __next__(self): @@ -337,3 +340,19 @@ def get_weighted_sampler(training_data, prob_style, sys_prob=False): len_sampler = training_data.total_batch * max(env.NUM_WORKERS, 1) sampler = WeightedRandomSampler(probs, len_sampler, replacement=True) return sampler + + +def get_sampler_from_params(_data, _params): + if ( + "sys_probs" in _params and _params["sys_probs"] is not None + ): # use sys_probs first + _sampler = get_weighted_sampler( + _data, + _params["sys_probs"], + sys_prob=True, + ) + elif "auto_prob" in _params: + _sampler = get_weighted_sampler(_data, _params["auto_prob"]) + else: + _sampler = get_weighted_sampler(_data, "prob_sys_size") + return _sampler diff --git a/deepmd/pd/utils/decomp.py b/deepmd/pd/utils/decomp.py index 272c2deacb..3b7bddbcd1 100644 --- a/deepmd/pd/utils/decomp.py +++ b/deepmd/pd/utils/decomp.py @@ -10,100 +10,17 @@ annotations, ) +import numpy as np import paddle __all__ = [ "masked_add_", - "norm", + "numel", "scatter_reduce", "sec", - "softmax", - "take_along_axis", ] -# decomposition for forward function -def softmax_decomp(x: paddle.Tensor, axis: int = -1) -> paddle.Tensor: - """Forward decompsition function of softmax. - - Parameters - ---------- - x : paddle.Tensor - Input. - axis : int, defaults: -1. - A dimension along which softmax will be computed. - - Returns - ------- - paddle.Tensor - Computed output. - """ - x_max = paddle.max(x, axis=axis, keepdim=True) - x = x - x_max - return paddle.exp(x) / paddle.sum(paddle.exp(x), axis=axis, keepdim=True) - - -def norm_decomp( - x: paddle.Tensor, p: float = 2, axis: bool = -1, keepdim: bool = False -) -> paddle.Tensor: - """Forward decompsition function of norm. - - Parameters - ---------- - x : paddle.Tensor - Input - p : float, default: 2 - Order of norm - axis : bool, default: -1 - Dimensions over which to compute the vector or matrix norm - keepdim : bool, default: False - If set to True, the reduced dimensions are retained in the result as dimensions - with size one - - Returns - ------- - paddle.Tensor - A real-valued tensor, even when A is complex. - """ - if p == 2 or p == 2.0: - # clip for negative indexing, or 1/(0^(k-1)) will cause inf in backward - return (x * x).sum(axis=axis, keepdim=keepdim) ** 0.5 - return (x.abs() ** p).sum(axis=axis, keepdim=keepdim) ** (1 / p) - - -def take_along_axis_decomp( - x: paddle.Tensor, indices: paddle.Tensor, axis: int, broadcast: bool = True -) -> paddle.Tensor: - """Forward decompsition function of take_along_axis. - - Parameters - ---------- - x : paddle.Tensor - The input tensor. - indices : paddle.Tensor - Indices to take along each 1d slice of array. - axis : int - The axis to take 1d slices along. - broadcast : bool, default: True - Whether the indices broadcast. - - Returns - ------- - paddle.Tensor - Computed output. - """ - # manually contruct indices for gather_nd(ind_gather_nd.ndim == indices.ndim + 1, - # the lsat 1 represents the number of dimension(s) of indices) - ind_gather_nd = paddle.stack( - paddle.meshgrid(*[paddle.arange(v) for v in indices.shape], indexing="ij"), - axis=-1, - ) - ind_gather_nd[..., axis] = indices - # compute output using constructed indices via gather_nd - out = paddle.gather_nd(x, ind_gather_nd) - return out - - def scatter_reduce_decomp( input: paddle.Tensor, axis: int, @@ -210,38 +127,13 @@ def masked_add__decomp( return x -def normalize_decomp( - x: paddle.Tensor, - p: float = 2, - axis: int = 1, - epsilon: float = 1e-12, -) -> paddle.Tensor: - """Forward decompsition function of normalize. - - Parameters - ---------- - x : paddle.Tensor - Input tensor. - p : float, optional - Order of the norm, default: 2 - axis : int, optional - Axis on which to perform normalization, default: 1 - epsilon : float, optional - Epislon value, default: 1e-12 +def numel(x: paddle.Tensor) -> int: + if paddle.in_dynamic_mode(): + return np.prod(x.shape) - Returns - ------- - paddle.Tensor - Computed output. - """ - return paddle.nn.functional.normalize(x, p, axis, epsilon) - # return x / norm(x, p=p, axis=axis, keepdim=True) + return paddle.numel(x) # alias for decomposed functions for convinience -normalize = normalize_decomp masked_add_ = masked_add__decomp scatter_reduce = scatter_reduce_decomp -take_along_axis = take_along_axis_decomp -norm = norm_decomp -softmax = softmax_decomp diff --git a/deepmd/pd/utils/env.py b/deepmd/pd/utils/env.py index 6dbdc69f30..041c231282 100644 --- a/deepmd/pd/utils/env.py +++ b/deepmd/pd/utils/env.py @@ -77,13 +77,75 @@ def enable_prim(enable: bool = True): + # NOTE: operator in list below will not use composite + # operator but kernel instead + EAGER_COMP_OP_BLACK_LIST = [ + "abs_grad", + "cast_grad", + # "concat_grad", + "cos_double_grad", + "cos_grad", + "cumprod_grad", + "cumsum_grad", + "dropout_grad", + "erf_grad", + "exp_grad", + "expand_grad", + "floor_grad", + "gather_grad", + "gather_nd_grad", + "gelu_grad", + "group_norm_grad", + "instance_norm_grad", + "layer_norm_grad", + "leaky_relu_grad", + "log_grad", + "max_grad", + "pad_grad", + "pow_double_grad", + "pow_grad", + "prod_grad", + "relu_grad", + "roll_grad", + "rsqrt_grad", + "scatter_grad", + "scatter_nd_add_grad", + "sigmoid_grad", + "silu_grad", + "sin_double_grad", + "sin_grad", + "slice_grad", + # "split_grad", + "sqrt_grad", + "stack_grad", + "sum_grad", + "tanh_double_grad", + "tanh_grad", + "topk_grad", + "transpose_grad", + "add_double_grad", + "add_grad", + "assign_grad", + "batch_norm_grad", + "divide_grad", + "elementwise_pow_grad", + "maximum_grad", + "min_grad", + "minimum_grad", + "multiply_grad", + "subtract_grad", + "tile_grad", + ] + EAGER_COMP_OP_BLACK_LIST = list(set(EAGER_COMP_OP_BLACK_LIST)) + """Enable running program in primitive C++ API in eager/static mode.""" from paddle.framework import ( core, ) core.set_prim_eager_enabled(enable) - core._set_prim_all_enabled(enable) + if enable: + paddle.framework.core._set_prim_backward_blacklist(*EAGER_COMP_OP_BLACK_LIST) log = logging.getLogger(__name__) log.info(f"{'Enable' if enable else 'Disable'} prim in eager and static mode.") diff --git a/deepmd/pd/utils/exclude_mask.py b/deepmd/pd/utils/exclude_mask.py index 088ac186a8..29c9cc3501 100644 --- a/deepmd/pd/utils/exclude_mask.py +++ b/deepmd/pd/utils/exclude_mask.py @@ -3,9 +3,6 @@ import numpy as np import paddle -from deepmd.pd.utils import ( - decomp, -) from deepmd.pd.utils.utils import ( to_paddle_tensor, ) @@ -18,7 +15,7 @@ def __init__( self, ntypes: int, exclude_types: list[int] = [], - ): + ) -> None: super().__init__() self.reinit(ntypes, exclude_types) @@ -26,7 +23,7 @@ def reinit( self, ntypes: int, exclude_types: list[int] = [], - ): + ) -> None: self.ntypes = ntypes self.exclude_types = exclude_types self.type_mask = np.array( @@ -71,7 +68,7 @@ def __init__( self, ntypes: int, exclude_types: list[tuple[int, int]] = [], - ): + ) -> None: super().__init__() self.reinit(ntypes, exclude_types) @@ -79,7 +76,7 @@ def reinit( self, ntypes: int, exclude_types: list[tuple[int, int]] = [], - ): + ) -> None: self.ntypes = ntypes self._exclude_types: set[tuple[int, int]] = set() for tt in exclude_types: @@ -137,19 +134,14 @@ def forward( [ atype_ext, self.ntypes - * paddle.ones([nf, 1], dtype=atype_ext.dtype).to( - device=atype_ext.place - ), + * paddle.ones([nf, 1], dtype=atype_ext.dtype).to(atype_ext.place), ], axis=-1, ) type_i = atype_ext[:, :nloc].reshape([nf, nloc]) * (self.ntypes + 1) # nf x nloc x nnei index = paddle.where(nlist == -1, nall, nlist).reshape([nf, nloc * nnei]) - # type_j = paddle.take_along_axis(ae, axis=1, indices=index).reshape( - # [nf, nloc, nnei] - # ) - type_j = decomp.take_along_axis(ae, axis=1, indices=index).reshape( + type_j = paddle.take_along_axis(ae, axis=1, indices=index).reshape( [nf, nloc, nnei] ) type_ij = type_i[:, :, None] + type_j diff --git a/deepmd/pd/utils/nlist.py b/deepmd/pd/utils/nlist.py index 44924ce07d..ae9db628a1 100644 --- a/deepmd/pd/utils/nlist.py +++ b/deepmd/pd/utils/nlist.py @@ -7,7 +7,6 @@ import paddle from deepmd.pd.utils import ( - decomp, env, ) from deepmd.pd.utils.region import ( @@ -118,8 +117,7 @@ def build_neighbor_list( if paddle.in_dynamic_mode(): assert list(diff.shape) == [batch_size, nloc, nall, 3] # nloc x nall - # rr = paddle.linalg.norm(diff, axis=-1) - rr = decomp.norm(diff, axis=-1) + rr = paddle.linalg.norm(diff, axis=-1) # if central atom has two zero distances, sorting sometimes can not exclude itself rr = rr - paddle.eye(nloc, nall, dtype=rr.dtype).to(device=rr.place).unsqueeze(0) rr, nlist = paddle.sort(rr, axis=-1), paddle.argsort(rr, axis=-1) @@ -267,8 +265,7 @@ def build_directional_neighbor_list( if paddle.in_dynamic_mode(): assert list(diff.shape) == [batch_size, nloc_cntl, nall_neig, 3] # nloc x nall - # rr = paddle.linalg.norm(diff, axis=-1) - rr = decomp.norm(diff, axis=-1) + rr = paddle.linalg.norm(diff, axis=-1) rr, nlist = paddle.sort(rr, axis=-1), paddle.argsort(rr, axis=-1) # We assume that the central and neighbor atoms are diffferent, @@ -300,12 +297,7 @@ def nlist_distinguish_types( tmp_atype = paddle.tile(atype.unsqueeze(1), [1, nloc, 1]) mask = nlist == -1 # nloc x s(nsel) - # tnlist = paddle.take_along_axis( - # tmp_atype, - # axis=2, - # indices=nlist.masked_fill(mask, 0), - # ) - tnlist = decomp.take_along_axis( + tnlist = paddle.take_along_axis( tmp_atype, axis=2, indices=nlist.masked_fill(mask, 0), @@ -322,8 +314,7 @@ def nlist_distinguish_types( paddle.argsort(pick_mask, axis=-1, descending=True, stable=True), ) # nloc x s(nsel) - # inlist = paddle.take_along_axis(nlist, axis=2, indices=imap) - inlist = decomp.take_along_axis(nlist, axis=2, indices=imap) + inlist = paddle.take_along_axis(nlist, axis=2, indices=imap) inlist = inlist.masked_fill(~(pick_mask.to(paddle.bool)), -1) # nloc x nsel[ii] ret_nlist.append(paddle.split(inlist, [ss, snsel - ss], axis=-1)[0]) @@ -404,17 +395,13 @@ def build_multiple_neighbor_list( .expand([-1, -1, 3]) ) # nb x nloc x nsel x 3 - # coord2 = paddle.take_along_axis(coord1, axis=1, index=index).reshape( - # [nb, nloc, nsel, 3] - # ) - coord2 = decomp.take_along_axis(coord1, axis=1, indices=index).reshape( + coord2 = paddle.take_along_axis(coord1, axis=1, indices=index).reshape( [nb, nloc, nsel, 3] ) # nb x nloc x nsel x 3 diff = coord2 - coord0[:, :, None, :] # nb x nloc x nsel - # rr = paddle.linalg.norm(diff, axis=-1) - rr = decomp.norm(diff, axis=-1) + rr = paddle.linalg.norm(diff, axis=-1) rr.masked_fill(nlist_mask, float("inf")) nlist0 = nlist ret = {} @@ -516,8 +503,7 @@ def extend_coord_with_ghosts( xyz = xyz.reshape([-1, 3]) # xyz = xyz.to(device=device) # ns x 3 - # shift_idx = xyz[paddle.argsort(paddle.norm(xyz, axis=1))] - shift_idx = xyz[paddle.argsort(decomp.norm(xyz, axis=1))] + shift_idx = xyz[paddle.argsort(paddle.norm(xyz, axis=1))] ns, _ = shift_idx.shape nall = ns * nloc # nf x ns x 3 diff --git a/deepmd/pd/utils/region.py b/deepmd/pd/utils/region.py index 21927e3619..f3e3eaa52d 100644 --- a/deepmd/pd/utils/region.py +++ b/deepmd/pd/utils/region.py @@ -1,10 +1,6 @@ # SPDX-License-Identifier: LGPL-3.0-or-later import paddle -from deepmd.pd.utils import ( - decomp, -) - def phys2inter( coord: paddle.Tensor, @@ -82,14 +78,11 @@ def to_face_distance( def b_to_face_distance(cell): volume = paddle.linalg.det(cell) c_yz = paddle.cross(cell[:, 1], cell[:, 2], axis=-1) - # _h2yz = volume / paddle.linalg.norm(c_yz, axis=-1) - _h2yz = volume / decomp.norm(c_yz, axis=-1) + _h2yz = volume / paddle.linalg.norm(c_yz, axis=-1) c_zx = paddle.cross(cell[:, 2], cell[:, 0], axis=-1) - # _h2zx = volume / paddle.linalg.norm(c_zx, axis=-1) - _h2zx = volume / decomp.norm(c_zx, axis=-1) + _h2zx = volume / paddle.linalg.norm(c_zx, axis=-1) c_xy = paddle.cross(cell[:, 0], cell[:, 1], axis=-1) - # _h2xy = volume / paddle.linalg.norm(c_xy, axis=-1) - _h2xy = volume / decomp.norm(c_xy, axis=-1) + _h2xy = volume / paddle.linalg.norm(c_xy, axis=-1) return paddle.stack([_h2yz, _h2zx, _h2xy], axis=1) diff --git a/deepmd/pd/utils/utils.py b/deepmd/pd/utils/utils.py index 48732ff84e..87072eb3cd 100644 --- a/deepmd/pd/utils/utils.py +++ b/deepmd/pd/utils/utils.py @@ -3,6 +3,9 @@ annotations, ) +from contextlib import ( + contextmanager, +) from typing import ( TYPE_CHECKING, overload, @@ -12,6 +15,9 @@ import numpy as np import paddle import paddle.nn.functional as F +from paddle.framework import ( + core, +) from deepmd.dpmodel.common import PRECISION_DICT as NP_PRECISION_DICT @@ -177,3 +183,16 @@ def get_generator( return generator else: return None + + +@contextmanager +def nvprof_context(enable_profiler: bool, name: str): + if enable_profiler: + core.nvprof_nvtx_push(name) + + try: + yield + + finally: + if enable_profiler: + core.nvprof_nvtx_pop() diff --git a/source/tests/consistent/descriptor/test_dpa1.py b/source/tests/consistent/descriptor/test_dpa1.py index 8be219f5ea..92b2c6bd0b 100644 --- a/source/tests/consistent/descriptor/test_dpa1.py +++ b/source/tests/consistent/descriptor/test_dpa1.py @@ -18,6 +18,7 @@ from ..common import ( INSTALLED_ARRAY_API_STRICT, INSTALLED_JAX, + INSTALLED_PD, INSTALLED_PT, INSTALLED_TF, CommonTest, @@ -39,6 +40,10 @@ from deepmd.jax.descriptor.dpa1 import DescrptDPA1 as DescriptorDPA1JAX else: DescriptorDPA1JAX = None +if INSTALLED_PD: + from deepmd.pd.model.descriptor.dpa1 import DescrptDPA1 as DescrptDPA1PD +else: + DescrptDPA1PD = None if INSTALLED_ARRAY_API_STRICT: from ...array_api_strict.descriptor.dpa1 import DescrptDPA1 as DescriptorDPA1Strict else: @@ -187,6 +192,34 @@ def skip_dp(self) -> bool: temperature, ) + @property + def skip_pd(self) -> bool: + ( + tebd_dim, + tebd_input_mode, + resnet_dt, + type_one_side, + attn, + attn_layer, + attn_dotr, + excluded_types, + env_protection, + set_davg_zero, + scaling_factor, + normalize, + temperature, + ln_eps, + smooth_type_embedding, + concat_output_tebd, + precision, + use_econf_tebd, + use_tebd_bias, + ) = self.param + return not INSTALLED_PD or self.is_meaningless_zero_attention_layer_tests( + attn_layer, + temperature, + ) + @property def skip_jax(self) -> bool: ( @@ -287,6 +320,7 @@ def skip_tf(self) -> bool: tf_class = DescrptDPA1TF dp_class = DescrptDPA1DP pt_class = DescrptDPA1PT + pd_class = DescrptDPA1PD jax_class = DescriptorDPA1JAX array_api_strict_class = DescriptorDPA1Strict @@ -387,6 +421,16 @@ def eval_jax(self, jax_obj: Any) -> Any: mixed_types=True, ) + def eval_pd(self, pd_obj: Any) -> Any: + return self.eval_pd_descriptor( + pd_obj, + self.natoms, + self.coords, + self.atype, + self.box, + mixed_types=True, + ) + def eval_array_api_strict(self, array_api_strict_obj: Any) -> Any: return self.eval_array_api_strict_descriptor( array_api_strict_obj, diff --git a/source/tests/consistent/model/test_dpa1.py b/source/tests/consistent/model/test_dpa1.py index 774c624ac7..8b8fab7ae1 100644 --- a/source/tests/consistent/model/test_dpa1.py +++ b/source/tests/consistent/model/test_dpa1.py @@ -14,6 +14,7 @@ from ..common import ( INSTALLED_JAX, + INSTALLED_PD, INSTALLED_PT, INSTALLED_TF, SKIP_FLAG, @@ -37,6 +38,11 @@ model_args, ) +if INSTALLED_PD: + from deepmd.pd.model.model import get_model as get_model_pd + from deepmd.pd.model.model.ener_model import EnergyModel as EnergyModelPD +else: + EnergyModelPD = None if INSTALLED_JAX: from deepmd.jax.model.ener_model import EnergyModel as EnergyModelJAX from deepmd.jax.model.model import get_model as get_model_jax @@ -90,6 +96,7 @@ def data(self) -> dict: tf_class = EnergyModelTF dp_class = EnergyModelDP pt_class = EnergyModelPT + pd_class = EnergyModelPD jax_class = EnergyModelJAX args = model_args() @@ -102,6 +109,8 @@ def get_reference_backend(self): return self.RefBackend.PT if not self.skip_tf: return self.RefBackend.TF + if not self.skip_pd: + return self.RefBackend.PD if not self.skip_jax: return self.RefBackend.JAX if not self.skip_dp: @@ -119,6 +128,8 @@ def pass_data_to_cls(self, cls, data) -> Any: return get_model_dp(data) elif cls is EnergyModelPT: return get_model_pt(data) + elif cls is EnergyModelPD: + return get_model_pd(data) elif cls is EnergyModelJAX: return get_model_jax(data) return cls(**data, **self.additional_data) @@ -190,6 +201,15 @@ def eval_pt(self, pt_obj: Any) -> Any: self.box, ) + def eval_pd(self, pd_obj: Any) -> Any: + return self.eval_pd_model( + pd_obj, + self.natoms, + self.coords, + self.atype, + self.box, + ) + def eval_jax(self, jax_obj: Any) -> Any: return self.eval_jax_model( jax_obj, @@ -225,6 +245,14 @@ def extract_ret(self, ret: Any, backend) -> tuple[np.ndarray, ...]: ret[3].ravel(), ret[4].ravel(), ) + elif backend is self.RefBackend.PD: + return ( + ret["energy"].flatten(), + ret["atom_energy"].flatten(), + ret["force"].flatten(), + ret["virial"].flatten(), + ret["atom_virial"].flatten(), + ) elif backend is self.RefBackend.JAX: return ( ret["energy_redu"].ravel(), diff --git a/source/tests/pd/common.py b/source/tests/pd/common.py index 59a9672330..d73544c5f1 100644 --- a/source/tests/pd/common.py +++ b/source/tests/pd/common.py @@ -1,4 +1,5 @@ # SPDX-License-Identifier: LGPL-3.0-or-later +import pathlib from typing import ( Optional, Union, @@ -7,6 +8,7 @@ import numpy as np import paddle +from deepmd.common import j_loader as dp_j_loader from deepmd.main import ( main, ) @@ -15,6 +17,12 @@ GLOBAL_PD_FLOAT_PRECISION, ) +tests_path = pathlib.Path(__file__).parent.absolute() + + +def j_loader(filename): + return dp_j_loader(tests_path / filename) + def run_dp(cmd: str) -> int: """Run DP directly from the entry point instead of the subprocess. diff --git a/source/tests/pd/model/models/dpa1.json b/source/tests/pd/model/models/dpa1.json new file mode 100644 index 0000000000..a969c290ae --- /dev/null +++ b/source/tests/pd/model/models/dpa1.json @@ -0,0 +1,36 @@ +{ + "type_map": [ + "O", + "H" + ], + "descriptor": { + "type": "se_atten", + "sel": 30, + "rcut_smth": 2.0, + "rcut": 6.0, + "neuron": [ + 2, + 4, + 8 + ], + "axis_neuron": 4, + "attn": 5, + "attn_layer": 2, + "attn_dotr": true, + "attn_mask": false, + "activation_function": "tanh", + "scaling_factor": 1.0, + "normalize": true, + "temperature": 1.0, + "seed": 1 + }, + "fitting_net": { + "neuron": [ + 240, + 240, + 240 + ], + "resnet_dt": true, + "seed": 1 + } +} diff --git a/source/tests/pd/model/models/dpa1.pd b/source/tests/pd/model/models/dpa1.pd new file mode 100644 index 0000000000000000000000000000000000000000..147312635cda5afb1065ddcb61b66e90bebe5f3f GIT binary patch literal 11329 zcmeHNc{r5&+m~#mMbU;R**X;}OG({YEhDX3juVl|D2$j2Au6OKYOEi3Z)ahbMl_w^}fF|9cTHy=X(F}{PE0OpX+(%x9VqrEk5H)B zslNQ*E~NSj+FFcVa-B-x@uY5^WKQ*_?xrddCJ}fEQUpG4Dv95h--6;~NBreB-lJ=% zJ{QNXnCv@Ai)v_SsQ;C7d^-_%C{%NwP40qYaZQ{jGBA;Wi406+U?Kw(8Te;2K;=wg zUjYY-g$3~xmBdF9{AIe6ru_SCpY=bdbsvnyIPp1=hhH)<(FYTKFwqAS>tI3${;zf5 z+qBlUurpg}YDS?DZ7Eh{Tcv+}GqpBzBHBABsr);nWMyk=XHPz+WMf9Lw{qk%=Y?O~DNIi*=q;sqUQ z(wwikW#5HCyXOz-Q&N%t4r*^MW8N`i58FdHd!fv-I`{wLqBblLQxywHp z#e#%>3c1Zdc5|cftz)@J+OqN%`!y3n4g?E??TLXW3$%K5Q<5R>-G!ug7g(^_cFJ}& z{cN~#cQns2yaqmMCOj705dgaqkM^navS95Z;*+rBHQ+a>yD&^47gCIH!*>B;-f|6`9#QMZ2Qqdr5z~UT`Qr@k$E)@feRGb&Qss>2k zykTo>KBQhG#~#siLwuhSjaE-^yX)+_xNs&kX~sEyG)scp!>UBt=6Wbddq0b&k&LZm zLz01CBHZ<8%Sf@xhA)J=p(GtTK6?93tvQkglSY5kJtM(HSGtLWoNEqv1{HbV`I-UA zorwYIvu;74;n7P@XR46LRRzpfGM*gP||;p+Y> zkn7lVyGuL^6V9jUU7<5z!!@0ID$dmyozu7XidzoUiLRbuW>kiOibpRb6|iB-2}X$J zx**65>z1aK6d^NsqfbAp9*xu5Gu)90eI6{SW{rI4wOqlk@+kv7buc&k8B?U9sN zM-Idf4cl(zPk{E^c{Uq*@-gVz>#ZV?3s2Y@(yyQbdMnQiK3J2A-&A75UsnlpD>DZ! z8ZndeU@*&PvtyI~Km_GEKaC}xkd|0d1l#B=k7G(*XmDB2p(6DS1bHoH?T$!=F50Sr zD1}RqU{}4VCHf1bL?_)K1vg-al=NU?Tq7F4x_S1(54E`eibHq!VFnb{7~8H*A4RFi zxkFQpyP!5OkpHGxEkqq&Vs*Uo3w)!s@z2vDpQMbVe*6TXG4<1)#KThbR=L;;{`52YduV)h5+1Q_0cEDIP1xozAJL_B1;LY?NgN~c!pimn*H*qu% zLO-5PP?}eYVl@A@AB?Mj&*^lu(b}gV=tkfNVo0wYxyIdEe!=k%+7B0V{_baQ{sih|As+j*fO5D--;UGJU80gvQ!WySdLx zYm;OFb^yuJjP(-x*B6b5SJorZ-%VC7r~|eexI4`5=)zXDKAP^#55V_cHa{ya78Ybw zYY=BQj;)S0e<(iNv59JGOSZT9o!R-{f&Ja#|E<5(|9oKMo@3?T^c)@^ z(ADN^I=DQK2p-NV#-O+mcY);;D4jz&AiVe%q)ywDvH1Z5FJ&7Sd!&(}-I142oluX5 zPUuXP>nX=NF-cF!f?A+h2Q&{-uc3ba$r%Fb$qYZwELTk&tO+Z@V?FJ$5-%QNhsGlB z_kyeO0;TA(%(Z+NnJ4Mg{4g5^DAn`4K53#@LA;RNjCv3`XM8Q%CkAz|ZzpUwPr>E& zIadqc6yf1R>}+9KI`R`wY|wbsgXbdSAj~HXB<|aWnQr6cCx33@4H*_nZCku2tu+_v z-7l5O2Fk$CL-K<UPIyO&usj$@eLJE^>5;*qnQMUb;KVTz#?Y_4X&QjhMz8WfOrWtAu9WO}T~D zhhCJ)DAd5r&%1@sEiH%eAX`IUNd}Y#zjS*Xk_78?=x+wHGLXuW}UpTy)!HE{l}PDBEDuYzc*qkIThcp^*ru;pbY${?`bmI#KzWyGqfAE}5cM3|Umc|1I+r5s$W8rGJ5sl<8P4EFlXXhjMBw8+@A_t1h$ z-Y&a(5Gtm~cgchc(B?c$9MKSbg;r$gHJ>8;!DIM&zz&O#xMJ4(Q%t$HxK5Dj&%7Q0 z%RoM}O5^3&uo%~K{Fc_A^c?Y?;TK-NG*B|P^LRI@xqgU-=K?0SJRjEL{6 z3Y<|1Goqhl#azn5>np^(Q$DjmNwn`rg$>nEJn0-sIwu+Vb#LlyrPpF%M@EY5;e326 zL>XRDRtd-A?}ys+6(UW=i|r*94symN^*d%ig<{b|S=}Xc*dMd?qP|WgG+aycovKp` zWcw3A6;YY^aAtzheCPnSlgqXZfiXDaQoot8*=+h0{g)1J$1%}-5wq+HigJnb2G4cssny7-tmOAVmTOH$ij&Je(fAk!`4Q!lz z{dKo7cIP+Gp?K8FnnJYybyvfdNI6ZmKmN=1#=rJCzPq0>i@-bP=tVe=zHij8*!XDz zoSY_nlz)9PTxU1<|NKH9@}?i6T;;36`yU4P_3V2FGK)@&OwX!C)v9SDv@ZoC zHO1p%aXo?ZhBCM-`K~m6paLD#UG|1%24kpe=d6(F0TGV)7CBRc}&BB%_bbFdIzl?bw zY~1-KtG3hObb#Q4M#ZPtZ)sq1JCy;0TeIr3-9qr}&(=QY^jY8@YcjlBgFUudqc8L%oGzr{qiLt)w-EaNAj6eP z-(ko%#&FRyYtKm*$?vdDQT{=3SsPfWMqZD-Ukcf4=C?b!^#4J|tG>^e@7D)U9!{HX zk+$7B)R_shl@7S;wp7Am;j%_klT?TzxhKxr*a8B}R3B(9po5f`>tn*sWOz*%DA@X> z8W+Zlmf55?;cEqP0mt=~5PT&_HFQlO=ziQTe`s+VNVvbahT_fObwE$C*ZmF_^%D}0 zd6vNbq(!~@N9*Bslo(VUOMx3-dcp<6+kkd6Z)o`s`Ka!!Fw(fX5%0I{ZWtt&pacIv z!PI@PpvBR4vTuGPbg&y`E2Q%9qW>vJJE4p4>}o_$C(k|HuytwGV%ca=-j~-tO(+)7 z(r`gZPd4tK<8E|5sR3sUQI;=yLnds8c`>OzfzGMjIhnI{>Mzx?d zXP3*G@q8?drT=?%m`;e#e^h)F{y=)avo?QMea0`_KPNxqbNtWf&-k1t1n5r)(D-Hh zXB0?c&$o9lPudeL_L6s+*_+uAIcCU^^P#Ox<-EyBn&dm%l4wh`H=__OOgaArIgss5 zRj8!7T;P>d(n2oqDk@2q3%r_2TE+!drIJ>0fz_y_wOn9zDoL9QtU)E|aDmrQNrqhD zwN#Rkujp@BuH?}Ci5t%0d4wCzA$p7(&S83j8_uEX$PMRkJ_28`dywnoCoW#o1qGCM*z1+l-qRfgZJ)(J~ zxdoMa$@xX8dby=JC7FpuMTwPDdU)cCQj_!Zic5-0lS`&dp3=h#Ryd`HJud~KWbzbm zhSn+0j7d}4rvy#W@MiR8^5$rplEK=;no?3(kP6bolx8udvjZZ}+{0)y#m~>r>pu{H z32%myDM_8q4V^KPhXiXs*l#_y>n3mDqWylN+Lvz4|7d^Naj}Sn^R@jtih*0dEIzdV zUEH=y^#Skqcjbpqb2+}j{<7MAdx5y)``^^^{#d>K`2M=wl`}7gy|aJyz{>d0&Nuee z$teyJybtzoiFIG}koCv@S@WmKOn>oU|LsFl{Uv8_us3r?Uej^vNf|u8Hz@J=gfKl literal 0 HcmV?d00001 diff --git a/source/tests/pd/model/test_atomic_model_atomic_stat.py b/source/tests/pd/model/test_atomic_model_atomic_stat.py new file mode 100644 index 0000000000..93aa7b8905 --- /dev/null +++ b/source/tests/pd/model/test_atomic_model_atomic_stat.py @@ -0,0 +1,431 @@ +# SPDX-License-Identifier: LGPL-3.0-or-later +import tempfile +import unittest +from pathlib import ( + Path, +) +from typing import ( + Optional, +) + +import h5py +import numpy as np +import paddle + +from deepmd.dpmodel.output_def import ( + FittingOutputDef, + OutputVariableDef, +) +from deepmd.pd.model.atomic_model import ( + BaseAtomicModel, + DPAtomicModel, +) +from deepmd.pd.model.descriptor.dpa1 import ( + DescrptDPA1, +) +from deepmd.pd.model.task.base_fitting import ( + BaseFitting, +) +from deepmd.pd.utils import ( + env, +) +from deepmd.pd.utils.utils import ( + to_numpy_array, + to_paddle_tensor, +) +from deepmd.utils.path import ( + DPPath, +) + +from .test_env_mat import ( + TestCaseSingleFrameWithNlist, +) + +dtype = env.GLOBAL_PD_FLOAT_PRECISION + + +class FooFitting(paddle.nn.Layer, BaseFitting): + def output_def(self): + return FittingOutputDef( + [ + OutputVariableDef( + "foo", + [1], + reducible=True, + r_differentiable=True, + c_differentiable=True, + ), + OutputVariableDef( + "bar", + [1, 2], + reducible=True, + r_differentiable=True, + c_differentiable=True, + ), + ] + ) + + def serialize(self) -> dict: + raise NotImplementedError + + def change_type_map( + self, type_map: list[str], model_with_new_type_stat=None + ) -> None: + raise NotImplementedError + + def get_type_map(self) -> list[str]: + raise NotImplementedError + + def forward( + self, + descriptor: paddle.Tensor, + atype: paddle.Tensor, + gr: Optional[paddle.Tensor] = None, + g2: Optional[paddle.Tensor] = None, + h2: Optional[paddle.Tensor] = None, + fparam: Optional[paddle.Tensor] = None, + aparam: Optional[paddle.Tensor] = None, + ): + nf, nloc, _ = descriptor.shape + ret = {} + ret["foo"] = ( + paddle.to_tensor( + [ + [1.0, 2.0, 3.0], + [4.0, 5.0, 6.0], + ] + ) + .reshape([nf, nloc, *self.output_def()["foo"].shape]) + .to(env.GLOBAL_PD_FLOAT_PRECISION) + .to(env.DEVICE) + ) + ret["bar"] = ( + paddle.to_tensor( + [ + [1.0, 2.0, 3.0, 7.0, 8.0, 9.0], + [4.0, 5.0, 6.0, 10.0, 11.0, 12.0], + ] + ) + .reshape([nf, nloc, *self.output_def()["bar"].shape]) + .to(env.GLOBAL_PD_FLOAT_PRECISION) + .to(env.DEVICE) + ) + return ret + + +class TestAtomicModelStat(unittest.TestCase, TestCaseSingleFrameWithNlist): + def tearDown(self): + self.tempdir.cleanup() + + def setUp(self): + TestCaseSingleFrameWithNlist.setUp(self) + self.merged_output_stat = [ + { + "coord": to_paddle_tensor(np.zeros([2, 3, 3])), + "atype": to_paddle_tensor( + np.array([[0, 0, 1], [0, 1, 1]], dtype=np.int32) + ), + "atype_ext": to_paddle_tensor( + np.array([[0, 0, 1, 0], [0, 1, 1, 0]], dtype=np.int32) + ), + "box": to_paddle_tensor(np.zeros([2, 3, 3])), + "natoms": to_paddle_tensor( + np.array([[3, 3, 2, 1], [3, 3, 1, 2]], dtype=np.int32) + ), + # bias of foo: 5, 6 + "atom_foo": to_paddle_tensor( + np.array([[5.0, 5.0, 5.0], [5.0, 6.0, 7.0]]).reshape(2, 3, 1) + ), + # bias of bar: [1, 5], [3, 2] + "bar": to_paddle_tensor( + np.array([5.0, 12.0, 7.0, 9.0]).reshape(2, 1, 2) + ), + "find_atom_foo": np.float32(1.0), + "find_bar": np.float32(1.0), + }, + { + "coord": to_paddle_tensor(np.zeros([2, 3, 3])), + "atype": to_paddle_tensor( + np.array([[0, 0, 1], [0, 1, 1]], dtype=np.int32) + ), + "atype_ext": to_paddle_tensor( + np.array([[0, 0, 1, 0], [0, 1, 1, 0]], dtype=np.int32) + ), + "box": to_paddle_tensor(np.zeros([2, 3, 3])), + "natoms": to_paddle_tensor( + np.array([[3, 3, 2, 1], [3, 3, 1, 2]], dtype=np.int32) + ), + # bias of foo: 5, 6 from atomic label. + "foo": to_paddle_tensor(np.array([5.0, 7.0]).reshape(2, 1)), + # bias of bar: [1, 5], [3, 2] + "bar": to_paddle_tensor( + np.array([5.0, 12.0, 7.0, 9.0]).reshape(2, 1, 2) + ), + "find_foo": np.float32(1.0), + "find_bar": np.float32(1.0), + }, + ] + self.tempdir = tempfile.TemporaryDirectory() + h5file = str((Path(self.tempdir.name) / "testcase.h5").resolve()) + with h5py.File(h5file, "w") as f: + pass + self.stat_file_path = DPPath(h5file, "a") + + def test_output_stat(self): + nf, nloc, nnei = self.nlist.shape + ds = DescrptDPA1( + self.rcut, + self.rcut_smth, + sum(self.sel), + self.nt, + ).to(env.DEVICE) + ft = FooFitting().to(env.DEVICE) + type_map = ["foo", "bar"] + md0 = DPAtomicModel( + ds, + ft, + type_map=type_map, + ).to(env.DEVICE) + args = [ + to_paddle_tensor(ii) for ii in [self.coord_ext, self.atype_ext, self.nlist] + ] + # nf x nloc + at = self.atype_ext[:, :nloc] + + def cvt_ret(x): + return {kk: to_numpy_array(vv) for kk, vv in x.items()} + + # 1. test run without bias + # nf x na x odim + ret0 = md0.forward_common_atomic(*args) + ret0 = cvt_ret(ret0) + expected_ret0 = {} + expected_ret0["foo"] = np.array( + [ + [1.0, 2.0, 3.0], + [4.0, 5.0, 6.0], + ] + ).reshape([nf, nloc, *md0.fitting_output_def()["foo"].shape]) + expected_ret0["bar"] = np.array( + [ + [1.0, 2.0, 3.0, 7.0, 8.0, 9.0], + [4.0, 5.0, 6.0, 10.0, 11.0, 12.0], + ] + ).reshape([nf, nloc, *md0.fitting_output_def()["bar"].shape]) + for kk in ["foo", "bar"]: + np.testing.assert_almost_equal(ret0[kk], expected_ret0[kk]) + + # 2. test bias is applied + md0.compute_or_load_out_stat( + self.merged_output_stat, stat_file_path=self.stat_file_path + ) + ret1 = md0.forward_common_atomic(*args) + expected_std = np.ones( + (2, 2, 2), dtype=np.float64 + ) # 2 keys, 2 atypes, 2 max dims. + expected_std[0, :, :1] = np.array([0.0, 0.816496]).reshape( + 2, 1 + ) # updating std for foo based on [5.0, 5.0, 5.0], [5.0, 6.0, 7.0]] + np.testing.assert_almost_equal( + to_numpy_array(md0.out_std), expected_std, decimal=4 + ) + ret1 = cvt_ret(ret1) + # nt x odim + foo_bias = np.array([5.0, 6.0]).reshape(2, 1) + bar_bias = np.array([1.0, 5.0, 3.0, 2.0]).reshape(2, 1, 2) + expected_ret1 = {} + expected_ret1["foo"] = ret0["foo"] + foo_bias[at] + expected_ret1["bar"] = ret0["bar"] + bar_bias[at] + for kk in ["foo", "bar"]: + np.testing.assert_almost_equal(ret1[kk], expected_ret1[kk]) + + # 3. test bias load from file + def raise_error(): + raise RuntimeError + + md0.compute_or_load_out_stat(raise_error, stat_file_path=self.stat_file_path) + ret2 = md0.forward_common_atomic(*args) + ret2 = cvt_ret(ret2) + for kk in ["foo", "bar"]: + np.testing.assert_almost_equal(ret1[kk], ret2[kk]) + np.testing.assert_almost_equal( + to_numpy_array(md0.out_std), expected_std, decimal=4 + ) + + # 4. test change bias + BaseAtomicModel.change_out_bias( + md0, self.merged_output_stat, bias_adjust_mode="change-by-statistic" + ) + args = [ + to_paddle_tensor(ii) + for ii in [ + self.coord_ext, + to_numpy_array(self.merged_output_stat[0]["atype_ext"]), + self.nlist, + ] + ] + ret3 = md0.forward_common_atomic(*args) + ret3 = cvt_ret(ret3) + expected_std[0, :, :1] = np.array([1.24722, 0.47140]).reshape( + 2, 1 + ) # updating std for foo based on [4.0, 3.0, 2.0], [1.0, 1.0, 1.0]] + expected_ret3 = {} + # new bias [2.666, 1.333] + expected_ret3["foo"] = np.array( + [[3.6667, 4.6667, 4.3333], [6.6667, 6.3333, 7.3333]] + ).reshape(2, 3, 1) + for kk in ["foo"]: + np.testing.assert_almost_equal(ret3[kk], expected_ret3[kk], decimal=4) + np.testing.assert_almost_equal( + to_numpy_array(md0.out_std), expected_std, decimal=4 + ) + + +class TestAtomicModelStatMergeGlobalAtomic( + unittest.TestCase, TestCaseSingleFrameWithNlist +): + def tearDown(self): + self.tempdir.cleanup() + + def setUp(self): + TestCaseSingleFrameWithNlist.setUp(self) + self.merged_output_stat = [ + { + "coord": to_paddle_tensor(np.zeros([2, 3, 3])), + "atype": to_paddle_tensor( + np.array([[0, 0, 0], [0, 0, 0]], dtype=np.int32) + ), + "atype_ext": to_paddle_tensor( + np.array([[0, 0, 1, 0], [0, 1, 1, 0]], dtype=np.int32) + ), + "box": to_paddle_tensor(np.zeros([2, 3, 3])), + "natoms": to_paddle_tensor( + np.array([[3, 3, 2, 1], [3, 3, 1, 2]], dtype=np.int32) + ), + # bias of foo: 5.5, nan + "atom_foo": to_paddle_tensor( + np.array([[5.0, 5.0, 5.0], [5.0, 6.0, 7.0]]).reshape(2, 3, 1) + ), + # bias of bar: [1, 5], [3, 2] + "bar": to_paddle_tensor( + np.array([5.0, 12.0, 7.0, 9.0]).reshape(2, 1, 2) + ), + "find_atom_foo": np.float32(1.0), + "find_bar": np.float32(1.0), + }, + { + "coord": to_paddle_tensor(np.zeros([2, 3, 3])), + "atype": to_paddle_tensor( + np.array([[0, 0, 1], [0, 1, 1]], dtype=np.int32) + ), + "atype_ext": to_paddle_tensor( + np.array([[0, 0, 1, 0], [0, 1, 1, 0]], dtype=np.int32) + ), + "box": to_paddle_tensor(np.zeros([2, 3, 3])), + "natoms": to_paddle_tensor( + np.array([[3, 3, 2, 1], [3, 3, 1, 2]], dtype=np.int32) + ), + # bias of foo: 5.5, 3 from atomic label. + "foo": to_paddle_tensor(np.array([5.0, 7.0]).reshape(2, 1)), + # bias of bar: [1, 5], [3, 2] + "bar": to_paddle_tensor( + np.array([5.0, 12.0, 7.0, 9.0]).reshape(2, 1, 2) + ), + "find_foo": np.float32(1.0), + "find_bar": np.float32(1.0), + }, + ] + self.tempdir = tempfile.TemporaryDirectory() + h5file = str((Path(self.tempdir.name) / "testcase.h5").resolve()) + with h5py.File(h5file, "w") as f: + pass + self.stat_file_path = DPPath(h5file, "a") + + def test_output_stat(self): + nf, nloc, nnei = self.nlist.shape + ds = DescrptDPA1( + self.rcut, + self.rcut_smth, + sum(self.sel), + self.nt, + ).to(env.DEVICE) + ft = FooFitting().to(env.DEVICE) + type_map = ["foo", "bar"] + md0 = DPAtomicModel( + ds, + ft, + type_map=type_map, + ).to(env.DEVICE) + args = [ + to_paddle_tensor(ii) for ii in [self.coord_ext, self.atype_ext, self.nlist] + ] + # nf x nloc + at = self.atype_ext[:, :nloc] + + def cvt_ret(x): + return {kk: to_numpy_array(vv) for kk, vv in x.items()} + + # 1. test run without bias + # nf x na x odim + ret0 = md0.forward_common_atomic(*args) + ret0 = cvt_ret(ret0) + expected_ret0 = {} + expected_ret0["foo"] = np.array( + [ + [1.0, 2.0, 3.0], + [4.0, 5.0, 6.0], + ] + ).reshape([nf, nloc, *md0.fitting_output_def()["foo"].shape]) + expected_ret0["bar"] = np.array( + [ + [1.0, 2.0, 3.0, 7.0, 8.0, 9.0], + [4.0, 5.0, 6.0, 10.0, 11.0, 12.0], + ] + ).reshape([nf, nloc, *md0.fitting_output_def()["bar"].shape]) + for kk in ["foo", "bar"]: + np.testing.assert_almost_equal(ret0[kk], expected_ret0[kk]) + + # 2. test bias is applied + md0.compute_or_load_out_stat( + self.merged_output_stat, stat_file_path=self.stat_file_path + ) + ret1 = md0.forward_common_atomic(*args) + ret1 = cvt_ret(ret1) + # nt x odim + foo_bias = np.array([5.5, 3.0]).reshape(2, 1) + bar_bias = np.array([1.0, 5.0, 3.0, 2.0]).reshape(2, 1, 2) + expected_ret1 = {} + expected_ret1["foo"] = ret0["foo"] + foo_bias[at] + expected_ret1["bar"] = ret0["bar"] + bar_bias[at] + for kk in ["foo", "bar"]: + np.testing.assert_almost_equal(ret1[kk], expected_ret1[kk]) + + # 3. test bias load from file + def raise_error(): + raise RuntimeError + + md0.compute_or_load_out_stat(raise_error, stat_file_path=self.stat_file_path) + ret2 = md0.forward_common_atomic(*args) + ret2 = cvt_ret(ret2) + for kk in ["foo", "bar"]: + np.testing.assert_almost_equal(ret1[kk], ret2[kk]) + + # 4. test change bias + BaseAtomicModel.change_out_bias( + md0, self.merged_output_stat, bias_adjust_mode="change-by-statistic" + ) + args = [ + to_paddle_tensor(ii) + for ii in [ + self.coord_ext, + to_numpy_array(self.merged_output_stat[0]["atype_ext"]), + self.nlist, + ] + ] + ret3 = md0.forward_common_atomic(*args) + ret3 = cvt_ret(ret3) + expected_ret3 = {} + # new bias [2, -5] + expected_ret3["foo"] = np.array([[3, 4, -2], [6, 0, 1]]).reshape(2, 3, 1) + for kk in ["foo"]: + np.testing.assert_almost_equal(ret3[kk], expected_ret3[kk], decimal=4) diff --git a/source/tests/pd/model/test_atomic_model_global_stat.py b/source/tests/pd/model/test_atomic_model_global_stat.py new file mode 100644 index 0000000000..abd7928a0f --- /dev/null +++ b/source/tests/pd/model/test_atomic_model_global_stat.py @@ -0,0 +1,510 @@ +# SPDX-License-Identifier: LGPL-3.0-or-later +import tempfile +import unittest +from pathlib import ( + Path, +) +from typing import ( + Optional, +) + +import h5py +import numpy as np +import paddle + +from deepmd.dpmodel.atomic_model import DPAtomicModel as DPDPAtomicModel +from deepmd.dpmodel.output_def import ( + FittingOutputDef, + OutputVariableDef, +) +from deepmd.pd.model.atomic_model import ( + BaseAtomicModel, + DPAtomicModel, +) +from deepmd.pd.model.descriptor import ( + DescrptDPA1, + DescrptSeA, +) +from deepmd.pd.model.task.base_fitting import ( + BaseFitting, +) +from deepmd.pd.model.task.ener import ( + InvarFitting, +) +from deepmd.pd.utils import ( + env, +) +from deepmd.pd.utils.utils import ( + to_numpy_array, + to_paddle_tensor, +) +from deepmd.utils.path import ( + DPPath, +) + +from .test_env_mat import ( + TestCaseSingleFrameWithNlist, +) + +dtype = env.GLOBAL_PD_FLOAT_PRECISION + + +class FooFitting(paddle.nn.Layer, BaseFitting): + def output_def(self): + return FittingOutputDef( + [ + OutputVariableDef( + "foo", + [1], + reducible=True, + r_differentiable=True, + c_differentiable=True, + ), + OutputVariableDef( + "pix", + [1], + reducible=True, + r_differentiable=True, + c_differentiable=True, + ), + OutputVariableDef( + "bar", + [1, 2], + reducible=True, + r_differentiable=True, + c_differentiable=True, + ), + ] + ) + + def serialize(self) -> dict: + raise NotImplementedError + + def change_type_map( + self, type_map: list[str], model_with_new_type_stat=None + ) -> None: + raise NotImplementedError + + def get_type_map(self) -> list[str]: + raise NotImplementedError + + def forward( + self, + descriptor: paddle.Tensor, + atype: paddle.Tensor, + gr: Optional[paddle.Tensor] = None, + g2: Optional[paddle.Tensor] = None, + h2: Optional[paddle.Tensor] = None, + fparam: Optional[paddle.Tensor] = None, + aparam: Optional[paddle.Tensor] = None, + ): + nf, nloc, _ = descriptor.shape + ret = {} + ret["foo"] = ( + paddle.to_tensor( + [ + [1.0, 2.0, 3.0], + [4.0, 5.0, 6.0], + ] + ) + .reshape([nf, nloc] + self.output_def()["foo"].shape) # noqa: RUF005 + .to(env.GLOBAL_PD_FLOAT_PRECISION) + .to(env.DEVICE) + ) + ret["pix"] = ( + paddle.to_tensor( + [ + [3.0, 2.0, 1.0], + [6.0, 5.0, 4.0], + ] + ) + .reshape([nf, nloc] + self.output_def()["pix"].shape) # noqa: RUF005 + .to(env.GLOBAL_PD_FLOAT_PRECISION) + .to(env.DEVICE) + ) + ret["bar"] = ( + paddle.to_tensor( + [ + [1.0, 2.0, 3.0, 7.0, 8.0, 9.0], + [4.0, 5.0, 6.0, 10.0, 11.0, 12.0], + ] + ) + .reshape([nf, nloc] + self.output_def()["bar"].shape) # noqa: RUF005 + .to(env.GLOBAL_PD_FLOAT_PRECISION) + .to(env.DEVICE) + ) + return ret + + +class TestAtomicModelStat(unittest.TestCase, TestCaseSingleFrameWithNlist): + def tearDown(self): + self.tempdir.cleanup() + + def setUp(self): + TestCaseSingleFrameWithNlist.setUp(self) + nf, nloc, nnei = self.nlist.shape + self.merged_output_stat = [ + { + "coord": to_paddle_tensor(np.zeros([2, 3, 3])), + "atype": to_paddle_tensor( + np.array([[0, 0, 1], [0, 1, 1]], dtype=np.int32) + ), + "atype_ext": to_paddle_tensor( + np.array([[0, 0, 1, 0], [0, 1, 1, 0]], dtype=np.int32) + ), + "box": to_paddle_tensor(np.zeros([2, 3, 3])), + "natoms": to_paddle_tensor( + np.array([[3, 3, 2, 1], [3, 3, 1, 2]], dtype=np.int32) + ), + # bias of foo: 1, 3 + "foo": to_paddle_tensor(np.array([5.0, 7.0]).reshape(2, 1)), + # no bias of pix + # bias of bar: [1, 5], [3, 2] + "bar": to_paddle_tensor( + np.array([5.0, 12.0, 7.0, 9.0]).reshape(2, 1, 2) + ), + "find_foo": np.float32(1.0), + "find_bar": np.float32(1.0), + } + ] + self.tempdir = tempfile.TemporaryDirectory() + h5file = str((Path(self.tempdir.name) / "testcase.h5").resolve()) + with h5py.File(h5file, "w") as f: + pass + self.stat_file_path = DPPath(h5file, "a") + + def test_output_stat(self): + nf, nloc, nnei = self.nlist.shape + ds = DescrptDPA1( + self.rcut, + self.rcut_smth, + sum(self.sel), + self.nt, + ).to(env.DEVICE) + ft = FooFitting().to(env.DEVICE) + type_map = ["foo", "bar"] + md0 = DPAtomicModel( + ds, + ft, + type_map=type_map, + ).to(env.DEVICE) + args = [ + to_paddle_tensor(ii) for ii in [self.coord_ext, self.atype_ext, self.nlist] + ] + # nf x nloc + at = self.atype_ext[:, :nloc] + + def cvt_ret(x): + return {kk: to_numpy_array(vv) for kk, vv in x.items()} + + # 1. test run without bias + # nf x na x odim + ret0 = md0.forward_common_atomic(*args) + ret0 = cvt_ret(ret0) + + expected_ret0 = {} + expected_ret0["foo"] = np.array( + [ + [1.0, 2.0, 3.0], + [4.0, 5.0, 6.0], + ] + ).reshape([nf, nloc] + md0.fitting_output_def()["foo"].shape) # noqa: RUF005 + expected_ret0["pix"] = np.array( + [ + [3.0, 2.0, 1.0], + [6.0, 5.0, 4.0], + ] + ).reshape([nf, nloc] + md0.fitting_output_def()["pix"].shape) # noqa: RUF005 + expected_ret0["bar"] = np.array( + [ + [1.0, 2.0, 3.0, 7.0, 8.0, 9.0], + [4.0, 5.0, 6.0, 10.0, 11.0, 12.0], + ] + ).reshape([nf, nloc] + md0.fitting_output_def()["bar"].shape) # noqa: RUF005 + for kk in ["foo", "pix", "bar"]: + np.testing.assert_almost_equal(ret0[kk], expected_ret0[kk]) + + # 2. test bias is applied + md0.compute_or_load_out_stat( + self.merged_output_stat, stat_file_path=self.stat_file_path + ) + ret1 = md0.forward_common_atomic(*args) + ret1 = cvt_ret(ret1) + expected_std = np.ones((3, 2, 2)) # 3 keys, 2 atypes, 2 max dims. + # nt x odim + foo_bias = np.array([1.0, 3.0]).reshape(2, 1) + bar_bias = np.array([1.0, 5.0, 3.0, 2.0]).reshape(2, 1, 2) + expected_ret1 = {} + expected_ret1["foo"] = ret0["foo"] + foo_bias[at] + expected_ret1["pix"] = ret0["pix"] + expected_ret1["bar"] = ret0["bar"] + bar_bias[at] + for kk in ["foo", "pix", "bar"]: + np.testing.assert_almost_equal(ret1[kk], expected_ret1[kk]) + np.testing.assert_almost_equal(to_numpy_array(md0.out_std), expected_std) + + # 3. test bias load from file + def raise_error(): + raise RuntimeError + + md0.compute_or_load_out_stat(raise_error, stat_file_path=self.stat_file_path) + ret2 = md0.forward_common_atomic(*args) + ret2 = cvt_ret(ret2) + for kk in ["foo", "pix", "bar"]: + np.testing.assert_almost_equal(ret1[kk], ret2[kk]) + np.testing.assert_almost_equal(to_numpy_array(md0.out_std), expected_std) + + # 4. test change bias + BaseAtomicModel.change_out_bias( + md0, self.merged_output_stat, bias_adjust_mode="change-by-statistic" + ) + args = [ + to_paddle_tensor(ii) + for ii in [ + self.coord_ext, + to_numpy_array(self.merged_output_stat[0]["atype_ext"]), + self.nlist, + ] + ] + ret3 = md0.forward_common_atomic(*args) + ret3 = cvt_ret(ret3) + ## model output on foo: [[2, 3, 6], [5, 8, 9]] given bias [1, 3] + ## foo sumed: [11, 22] compared with [5, 7], fit target is [-6, -15] + ## fit bias is [1, -8] + ## old bias + fit bias [2, -5] + ## new model output is [[3, 4, -2], [6, 0, 1]], which sumed to [5, 7] + expected_ret3 = {} + expected_ret3["foo"] = np.array([[3, 4, -2], [6, 0, 1]]).reshape(2, 3, 1) + expected_ret3["pix"] = ret0["pix"] + for kk in ["foo", "pix"]: + np.testing.assert_almost_equal(ret3[kk], expected_ret3[kk]) + # bar is too complicated to be manually computed. + np.testing.assert_almost_equal(to_numpy_array(md0.out_std), expected_std) + + def test_preset_bias(self): + nf, nloc, nnei = self.nlist.shape + ds = DescrptDPA1( + self.rcut, + self.rcut_smth, + sum(self.sel), + self.nt, + ).to(env.DEVICE) + ft = FooFitting().to(env.DEVICE) + type_map = ["foo", "bar"] + preset_out_bias = { + # "foo": np.array(3.0, 2.0]).reshape(2, 1), + "foo": [None, 2], + "bar": np.array([7.0, 5.0, 13.0, 11.0]).reshape(2, 1, 2), + } + md0 = DPAtomicModel( + ds, + ft, + type_map=type_map, + preset_out_bias=preset_out_bias, + ).to(env.DEVICE) + args = [ + to_paddle_tensor(ii) for ii in [self.coord_ext, self.atype_ext, self.nlist] + ] + # nf x nloc + at = self.atype_ext[:, :nloc] + + def cvt_ret(x): + return {kk: to_numpy_array(vv) for kk, vv in x.items()} + + # 1. test run without bias + # nf x na x odim + ret0 = md0.forward_common_atomic(*args) + ret0 = cvt_ret(ret0) + expected_ret0 = {} + expected_ret0["foo"] = np.array( + [ + [1.0, 2.0, 3.0], + [4.0, 5.0, 6.0], + ] + ).reshape([nf, nloc] + md0.fitting_output_def()["foo"].shape) # noqa: RUF005 + expected_ret0["pix"] = np.array( + [ + [3.0, 2.0, 1.0], + [6.0, 5.0, 4.0], + ] + ).reshape([nf, nloc] + md0.fitting_output_def()["pix"].shape) # noqa: RUF005 + expected_ret0["bar"] = np.array( + [ + [1.0, 2.0, 3.0, 7.0, 8.0, 9.0], + [4.0, 5.0, 6.0, 10.0, 11.0, 12.0], + ] + ).reshape([nf, nloc] + md0.fitting_output_def()["bar"].shape) # noqa: RUF005 + for kk in ["foo", "pix", "bar"]: + np.testing.assert_almost_equal(ret0[kk], expected_ret0[kk]) + + # 2. test bias is applied + md0.compute_or_load_out_stat( + self.merged_output_stat, stat_file_path=self.stat_file_path + ) + ret1 = md0.forward_common_atomic(*args) + ret1 = cvt_ret(ret1) + # foo sums: [5, 7], + # given bias of type 1 being 2, the bias left for type 0 is [5-2*1, 7-2*2] = [3,3] + # the solution of type 0 is 1.8 + foo_bias = np.array([1.8, preset_out_bias["foo"][1]]).reshape(2, 1) + bar_bias = preset_out_bias["bar"] + expected_ret1 = {} + expected_ret1["foo"] = ret0["foo"] + foo_bias[at] + expected_ret1["pix"] = ret0["pix"] + expected_ret1["bar"] = ret0["bar"] + bar_bias[at] + for kk in ["foo", "pix", "bar"]: + np.testing.assert_almost_equal(ret1[kk], expected_ret1[kk]) + + # 3. test bias load from file + def raise_error(): + raise RuntimeError + + md0.compute_or_load_out_stat(raise_error, stat_file_path=self.stat_file_path) + ret2 = md0.forward_common_atomic(*args) + ret2 = cvt_ret(ret2) + for kk in ["foo", "pix", "bar"]: + np.testing.assert_almost_equal(ret1[kk], ret2[kk]) + + # 4. test change bias + BaseAtomicModel.change_out_bias( + md0, self.merged_output_stat, bias_adjust_mode="change-by-statistic" + ) + args = [ + to_paddle_tensor(ii) + for ii in [ + self.coord_ext, + to_numpy_array(self.merged_output_stat[0]["atype_ext"]), + self.nlist, + ] + ] + ret3 = md0.forward_common_atomic(*args) + ret3 = cvt_ret(ret3) + ## model output on foo: [[2.8, 3.8, 5], [5.8, 7., 8.]] given bias [1.8, 2] + ## foo sumed: [11.6, 20.8] compared with [5, 7], fit target is [-6.6, -13.8] + ## fit bias is [-7, 2] (2 is assigned. -7 is fit to [-8.6, -17.8]) + ## old bias[1.8,2] + fit bias[-7, 2] = [-5.2, 4] + ## new model output is [[-4.2, -3.2, 7], [-1.2, 9, 10]] + expected_ret3 = {} + expected_ret3["foo"] = np.array([[-4.2, -3.2, 7.0], [-1.2, 9.0, 10.0]]).reshape( + 2, 3, 1 + ) + expected_ret3["pix"] = ret0["pix"] + for kk in ["foo", "pix"]: + np.testing.assert_almost_equal(ret3[kk], expected_ret3[kk]) + # bar is too complicated to be manually computed. + + def test_preset_bias_all_none(self): + nf, nloc, nnei = self.nlist.shape + ds = DescrptDPA1( + self.rcut, + self.rcut_smth, + sum(self.sel), + self.nt, + ).to(env.DEVICE) + ft = FooFitting().to(env.DEVICE) + type_map = ["foo", "bar"] + preset_out_bias = { + "foo": [None, None], + } + md0 = DPAtomicModel( + ds, + ft, + type_map=type_map, + preset_out_bias=preset_out_bias, + ).to(env.DEVICE) + args = [ + to_paddle_tensor(ii) for ii in [self.coord_ext, self.atype_ext, self.nlist] + ] + # nf x nloc + at = self.atype_ext[:, :nloc] + + def cvt_ret(x): + return {kk: to_numpy_array(vv) for kk, vv in x.items()} + + # 1. test run without bias + # nf x na x odim + ret0 = md0.forward_common_atomic(*args) + ret0 = cvt_ret(ret0) + expected_ret0 = {} + expected_ret0["foo"] = np.array( + [ + [1.0, 2.0, 3.0], + [4.0, 5.0, 6.0], + ] + ).reshape([nf, nloc] + md0.fitting_output_def()["foo"].shape) # noqa: RUF005 + expected_ret0["pix"] = np.array( + [ + [3.0, 2.0, 1.0], + [6.0, 5.0, 4.0], + ] + ).reshape([nf, nloc] + md0.fitting_output_def()["pix"].shape) # noqa: RUF005 + expected_ret0["bar"] = np.array( + [ + [1.0, 2.0, 3.0, 7.0, 8.0, 9.0], + [4.0, 5.0, 6.0, 10.0, 11.0, 12.0], + ] + ).reshape([nf, nloc] + md0.fitting_output_def()["bar"].shape) # noqa: RUF005 + for kk in ["foo", "pix", "bar"]: + np.testing.assert_almost_equal(ret0[kk], expected_ret0[kk]) + + # 2. test bias is applied + md0.compute_or_load_out_stat( + self.merged_output_stat, stat_file_path=self.stat_file_path + ) + ret1 = md0.forward_common_atomic(*args) + ret1 = cvt_ret(ret1) + # nt x odim + foo_bias = np.array([1.0, 3.0]).reshape(2, 1) + bar_bias = np.array([1.0, 5.0, 3.0, 2.0]).reshape(2, 1, 2) + expected_ret1 = {} + expected_ret1["foo"] = ret0["foo"] + foo_bias[at] + expected_ret1["pix"] = ret0["pix"] + expected_ret1["bar"] = ret0["bar"] + bar_bias[at] + for kk in ["foo", "pix", "bar"]: + np.testing.assert_almost_equal(ret1[kk], expected_ret1[kk]) + + def test_serialize(self): + nf, nloc, nnei = self.nlist.shape + ds = DescrptSeA( + self.rcut, + self.rcut_smth, + self.sel, + ).to(env.DEVICE) + ft = InvarFitting( + "foo", + self.nt, + ds.get_dim_out(), + 1, + mixed_types=ds.mixed_types(), + ).to(env.DEVICE) + type_map = ["A", "B"] + md0 = DPAtomicModel( + ds, + ft, + type_map=type_map, + ).to(env.DEVICE) + args = [ + to_paddle_tensor(ii) for ii in [self.coord_ext, self.atype_ext, self.nlist] + ] + # nf x nloc + at = self.atype_ext[:, :nloc] + + def cvt_ret(x): + return {kk: to_numpy_array(vv) for kk, vv in x.items()} + + md0.compute_or_load_out_stat( + self.merged_output_stat, stat_file_path=self.stat_file_path + ) + ret0 = md0.forward_common_atomic(*args) + ret0 = cvt_ret(ret0) + md1 = DPAtomicModel.deserialize(md0.serialize()) + ret1 = md1.forward_common_atomic(*args) + ret1 = cvt_ret(ret1) + + for kk in ["foo"]: + np.testing.assert_almost_equal(ret0[kk], ret1[kk]) + + md2 = DPDPAtomicModel.deserialize(md0.serialize()) + args = [self.coord_ext, self.atype_ext, self.nlist] + ret2 = md2.forward_common_atomic(*args) + for kk in ["foo"]: + np.testing.assert_almost_equal(ret0[kk], ret2[kk]) diff --git a/source/tests/pd/model/test_autodiff.py b/source/tests/pd/model/test_autodiff.py index a056491fb3..1bd9dd0d0f 100644 --- a/source/tests/pd/model/test_autodiff.py +++ b/source/tests/pd/model/test_autodiff.py @@ -190,7 +190,6 @@ def setUp(self): self.model = get_model(model_params).to(env.DEVICE) -@unittest.skip("Skip for not implemented yet") class TestEnergyModelDPA1Force(unittest.TestCase, ForceTest): def setUp(self): model_params = copy.deepcopy(model_dpa1) @@ -198,7 +197,6 @@ def setUp(self): self.model = get_model(model_params).to(env.DEVICE) -@unittest.skip("Skip for not implemented yet") class TestEnergyModelDPA1Virial(unittest.TestCase, VirialTest): def setUp(self): model_params = copy.deepcopy(model_dpa1) diff --git a/source/tests/pd/model/test_descriptor.py b/source/tests/pd/model/test_descriptor.py index 10f2fd271b..dc78856851 100644 --- a/source/tests/pd/model/test_descriptor.py +++ b/source/tests/pd/model/test_descriptor.py @@ -17,7 +17,6 @@ prod_env_mat, ) from deepmd.pd.utils import ( - decomp, dp_random, env, ) @@ -179,7 +178,7 @@ def test_consistency(self): my_nlist = nlist.reshape([bsz, -1]).cpu() mask = my_nlist == -1 my_nlist = my_nlist * (~mask).astype(my_nlist.dtype) - my_nlist = decomp.take_along_axis(mapping, axis=-1, indices=my_nlist) + my_nlist = paddle.take_along_axis(mapping, axis=-1, indices=my_nlist) my_nlist = my_nlist * (~mask).astype(my_nlist.dtype) - mask.astype( my_nlist.dtype ) diff --git a/source/tests/pd/model/test_descriptor_dpa1.py b/source/tests/pd/model/test_descriptor_dpa1.py new file mode 100644 index 0000000000..bfcf4ba6ee --- /dev/null +++ b/source/tests/pd/model/test_descriptor_dpa1.py @@ -0,0 +1,387 @@ +# SPDX-License-Identifier: LGPL-3.0-or-later +import json +import os +import unittest +from pathlib import ( + Path, +) + +import numpy as np +import paddle + +from deepmd.pd.model.descriptor import ( + DescrptBlockSeAtten, + DescrptDPA1, +) +from deepmd.pd.model.network.network import ( + TypeEmbedNet, +) +from deepmd.pd.utils import ( + env, +) +from deepmd.pd.utils.nlist import ( + extend_input_and_build_neighbor_list, +) + +CUR_DIR = os.path.dirname(__file__) + + +class TestDPA1(unittest.TestCase): + def setUp(self): + cell = [ + 5.122106549439247480e00, + 4.016537340154059388e-01, + 6.951654033828678081e-01, + 4.016537340154059388e-01, + 6.112136112297989143e00, + 8.178091365465004481e-01, + 6.951654033828678081e-01, + 8.178091365465004481e-01, + 6.159552512682983760e00, + ] + self.cell = ( + paddle.to_tensor( + cell, + dtype=env.GLOBAL_PD_FLOAT_PRECISION, + ) + .to(device=env.DEVICE) + .reshape([1, 3, 3]) + ) + coord = [ + 2.978060152121375648e00, + 3.588469695887098077e00, + 2.792459820604495491e00, + 3.895592322591093115e00, + 2.712091020667753760e00, + 1.366836847133650501e00, + 9.955616170888935690e-01, + 4.121324820711413039e00, + 1.817239061889086571e00, + 3.553661462345699906e00, + 5.313046969500791583e00, + 6.635182659098815883e00, + 6.088601018589653080e00, + 6.575011420004332585e00, + 6.825240650611076099e00, + ] + self.coord = paddle.to_tensor( + coord, dtype=env.GLOBAL_PD_FLOAT_PRECISION, place=env.DEVICE + ).reshape([1, -1, 3]) + self.atype = paddle.to_tensor( + [0, 0, 0, 1, 1], dtype=paddle.int32, place=env.DEVICE + ).reshape([1, -1]) + self.ref_d = paddle.to_tensor( + [ + 8.382518544113587780e-03, + -3.390120566088597812e-03, + 6.145981571114964362e-03, + -4.880300873973819273e-03, + -3.390120566088597812e-03, + 1.372540996564941464e-03, + -2.484163690574096341e-03, + 1.972313058658722688e-03, + 6.145981571114964362e-03, + -2.484163690574096341e-03, + 4.507748738021747671e-03, + -3.579717194906019764e-03, + -4.880300873973819273e-03, + 1.972313058658722688e-03, + -3.579717194906019764e-03, + 2.842794615687799838e-03, + 6.733043802494966066e-04, + -2.721540313345096771e-04, + 4.936158526085561134e-04, + -3.919743287822345223e-04, + -1.311123004527576900e-02, + 5.301179352601203924e-03, + -9.614612349318877454e-03, + 7.634884975521277241e-03, + 8.877088452901006621e-03, + -3.590945566653638409e-03, + 6.508042782015627942e-03, + -5.167671664327699171e-03, + -2.697241463040870365e-03, + 1.091350446825975137e-03, + -1.976895708961905022e-03, + 1.569671412121975348e-03, + 8.645131636261189911e-03, + -3.557395265621639355e-03, + 6.298048561552698106e-03, + -4.999272007935521948e-03, + -3.557395265621639355e-03, + 1.467866637220284964e-03, + -2.587004431651147504e-03, + 2.052752235601402672e-03, + 6.298048561552698106e-03, + -2.587004431651147504e-03, + 4.594085551315935101e-03, + -3.647656549789176847e-03, + -4.999272007935521948e-03, + 2.052752235601402672e-03, + -3.647656549789176847e-03, + 2.896359275520481256e-03, + 6.689620176492027878e-04, + -2.753606422414641049e-04, + 4.864958810186969444e-04, + -3.860599754167503119e-04, + -1.349238259226558101e-02, + 5.547478630961994242e-03, + -9.835472300819447095e-03, + 7.808197926069362048e-03, + 9.220744348752592245e-03, + -3.795799103392961601e-03, + 6.716516319358462918e-03, + -5.331265718473574867e-03, + -2.783836698392940304e-03, + 1.147461939123531121e-03, + -2.025013030986024063e-03, + 1.606944814423778541e-03, + 9.280385723343491378e-03, + -3.515852178447095942e-03, + 7.085282215778941628e-03, + -5.675852414643783178e-03, + -3.515852178447095942e-03, + 1.337760635271160884e-03, + -2.679428786337713451e-03, + 2.145400621815936413e-03, + 7.085282215778941628e-03, + -2.679428786337713451e-03, + 5.414439648102228192e-03, + -4.338426468139268931e-03, + -5.675852414643783178e-03, + 2.145400621815936413e-03, + -4.338426468139268931e-03, + 3.476467482674507146e-03, + 7.166961981167455130e-04, + -2.697932188839837972e-04, + 5.474643906631899504e-04, + -4.386556623669893621e-04, + -1.480434821331240956e-02, + 5.604647062899507579e-03, + -1.130745349141585449e-02, + 9.059113563516829268e-03, + 9.758791063112262978e-03, + -3.701477720487638626e-03, + 7.448215522796466058e-03, + -5.966057584545172120e-03, + -2.845102393948158344e-03, + 1.078743584169829543e-03, + -2.170093031447992756e-03, + 1.738010461687942770e-03, + 9.867599071916231118e-03, + -3.811041717688905522e-03, + 7.121877634386481262e-03, + -5.703120290113914553e-03, + -3.811041717688905522e-03, + 1.474046183772771213e-03, + -2.747386907428428938e-03, + 2.199711055637492037e-03, + 7.121877634386481262e-03, + -2.747386907428428938e-03, + 5.145050639440944609e-03, + -4.120642824501622239e-03, + -5.703120290113914553e-03, + 2.199711055637492037e-03, + -4.120642824501622239e-03, + 3.300262321758350853e-03, + 1.370499995344566383e-03, + -5.313041843655797901e-04, + 9.860110343046961986e-04, + -7.892505817954784597e-04, + -1.507686316307561489e-02, + 5.818961290579217904e-03, + -1.088774506142304276e-02, + 8.719460408506790952e-03, + 9.764630842803939323e-03, + -3.770134041110058572e-03, + 7.049438389985595785e-03, + -5.645302934019884485e-03, + -3.533582373572779437e-03, + 1.367148320603491559e-03, + -2.546602904764623705e-03, + 2.038882844528267305e-03, + 7.448297038731285964e-03, + -2.924276815200288742e-03, + 5.355960540523636154e-03, + -4.280386435083473329e-03, + -2.924276815200288742e-03, + 1.150311064893848757e-03, + -2.100635980860638373e-03, + 1.678427895009850001e-03, + 5.355960540523636154e-03, + -2.100635980860638373e-03, + 3.853607053247790071e-03, + -3.080076301871465493e-03, + -4.280386435083473329e-03, + 1.678427895009850001e-03, + -3.080076301871465493e-03, + 2.461876613756722523e-03, + 9.730712866459405395e-04, + -3.821759579990726546e-04, + 6.994242056622360787e-04, + -5.589662297882965055e-04, + -1.138916742131982317e-02, + 4.469391132927387489e-03, + -8.192016282448397885e-03, + 6.547234460517113892e-03, + 7.460070829043288082e-03, + -2.929867802018087421e-03, + 5.363646855497249989e-03, + -4.286347242903034739e-03, + -2.643569023340565718e-03, + 1.038826463247002245e-03, + -1.899910089750410976e-03, + 1.518237240362583541e-03, + ], + dtype=env.GLOBAL_PD_FLOAT_PRECISION, + place=env.DEVICE, + ) + with open(Path(CUR_DIR) / "models" / "dpa1.json") as fp: + self.model_json = json.load(fp) + self.file_model_param = Path(CUR_DIR) / "models" / "dpa1.pd" + self.file_type_embed = Path(CUR_DIR) / "models" / "dpa2_tebd.pd" + + def test_descriptor_block(self) -> None: + # paddle.seed(0) + model_dpa1 = self.model_json + dparams = model_dpa1["descriptor"] + ntypes = len(model_dpa1["type_map"]) + assert "se_atten" == dparams["type"] + dparams.pop("type") + dparams["ntypes"] = ntypes + des = DescrptBlockSeAtten( + **dparams, + ).to(env.DEVICE) + state_dict = paddle.load(str(self.file_model_param)) + # this is an old state dict, modify manually + state_dict["compress_info.0"] = des.compress_info[0] + state_dict["compress_data.0"] = des.compress_data[0] + des.set_state_dict(state_dict) + coord = self.coord + atype = self.atype + box = self.cell + # handle type_embedding + type_embedding = TypeEmbedNet(ntypes, 8, use_tebd_bias=True).to(env.DEVICE) + type_embedding.set_state_dict(paddle.load(str(self.file_type_embed))) + + ## to save model parameters + # paddle.save(des.state_dict(), 'model_weights.pd') + # paddle.save(type_embedding.state_dict(), 'model_weights.pd') + ( + extended_coord, + extended_atype, + mapping, + nlist, + ) = extend_input_and_build_neighbor_list( + coord, + atype, + des.get_rcut(), + des.get_sel(), + mixed_types=des.mixed_types(), + box=box, + ) + descriptor, env_mat, diff, rot_mat, sw = des( + nlist, + extended_coord, + extended_atype, + type_embedding(extended_atype), + mapping=None, + ) + # np.savetxt('tmp.out', descriptor.detach().numpy().reshape(1,-1), delimiter=",") + self.assertEqual(descriptor.shape[-1], des.get_dim_out()) + self.assertAlmostEqual(6.0, des.get_rcut()) + self.assertEqual(30, des.get_nsel()) + self.assertEqual(2, des.get_ntypes()) + np.testing.assert_allclose( + descriptor.reshape([-1]).numpy(), self.ref_d.numpy(), atol=1e-10, rtol=1e-10 + ) + + def test_descriptor(self) -> None: + with open(Path(CUR_DIR) / "models" / "dpa1.json") as fp: + self.model_json = json.load(fp) + model_dpa2 = self.model_json + ntypes = len(model_dpa2["type_map"]) + dparams = model_dpa2["descriptor"] + dparams["ntypes"] = ntypes + assert dparams["type"] == "se_atten" + dparams.pop("type") + dparams["concat_output_tebd"] = False + dparams["use_tebd_bias"] = True + des = DescrptDPA1( + **dparams, + ).to(env.DEVICE) + target_dict = des.state_dict() + source_dict = paddle.load(str(self.file_model_param)) + type_embd_dict = paddle.load(str(self.file_type_embed)) + target_dict = translate_se_atten_and_type_embd_dicts_to_dpa1( + target_dict, + source_dict, + type_embd_dict, + ) + des.set_state_dict(target_dict) + + coord = self.coord + atype = self.atype + box = self.cell + ( + extended_coord, + extended_atype, + mapping, + nlist, + ) = extend_input_and_build_neighbor_list( + coord, + atype, + des.get_rcut(), + des.get_sel(), + mixed_types=des.mixed_types(), + box=box, + ) + descriptor, env_mat, diff, rot_mat, sw = des( + extended_coord, + extended_atype, + nlist, + mapping=mapping, + ) + self.assertEqual(descriptor.shape[-1], des.get_dim_out()) + self.assertAlmostEqual(6.0, des.get_rcut()) + self.assertEqual(30, des.get_nsel()) + self.assertEqual(2, des.get_ntypes()) + np.testing.assert_allclose( + descriptor.reshape([-1]).numpy(), self.ref_d.numpy(), atol=1e-10, rtol=1e-10 + ) + + dparams["concat_output_tebd"] = True + des = DescrptDPA1( + **dparams, + ).to(env.DEVICE) + descriptor, env_mat, diff, rot_mat, sw = des( + extended_coord, + extended_atype, + nlist, + mapping=mapping, + ) + self.assertEqual(descriptor.shape[-1], des.get_dim_out()) + + +def translate_se_atten_and_type_embd_dicts_to_dpa1( + target_dict, + source_dict, + type_embd_dict, +): + all_keys = list(target_dict.keys()) + record = [False for ii in all_keys] + for kk, vv in source_dict.items(): + tk = "se_atten." + kk + record[all_keys.index(tk)] = True + target_dict[tk] = vv + assert len(type_embd_dict.keys()) == 2 + it = iter(type_embd_dict.keys()) + for _ in range(2): + kk = next(it) + tk = "type_embedding." + kk + record[all_keys.index(tk)] = True + target_dict[tk] = type_embd_dict[kk] + record[all_keys.index("se_atten.compress_data.0")] = True + record[all_keys.index("se_atten.compress_info.0")] = True + assert all(record) + return target_dict diff --git a/source/tests/pd/model/test_dpa1.py b/source/tests/pd/model/test_dpa1.py new file mode 100644 index 0000000000..285dd3d4cd --- /dev/null +++ b/source/tests/pd/model/test_dpa1.py @@ -0,0 +1,164 @@ +# SPDX-License-Identifier: LGPL-3.0-or-later +import itertools +import unittest + +import numpy as np +import paddle + +from deepmd.dpmodel.descriptor.dpa1 import DescrptDPA1 as DPDescrptDPA1 +from deepmd.pd.model.descriptor.dpa1 import ( + DescrptDPA1, +) +from deepmd.pd.utils import ( + env, +) +from deepmd.pd.utils.env import ( + PRECISION_DICT, +) + +from ...seed import ( + GLOBAL_SEED, +) +from .test_env_mat import ( + TestCaseSingleFrameWithNlist, +) +from .test_mlp import ( + get_tols, +) + +dtype = env.GLOBAL_PD_FLOAT_PRECISION + + +class TestDescrptSeAtten(unittest.TestCase, TestCaseSingleFrameWithNlist): + def setUp(self): + TestCaseSingleFrameWithNlist.setUp(self) + + def test_consistency( + self, + ): + rng = np.random.default_rng(100) + nf, nloc, nnei = self.nlist.shape + davg = rng.normal(size=(self.nt, nnei, 4)) + dstd = rng.normal(size=(self.nt, nnei, 4)) + dstd = 0.1 + np.abs(dstd) + + for idt, sm, to, tm, prec, ect in itertools.product( + [False, True], # resnet_dt + [False, True], # smooth_type_embedding + [False, True], # type_one_side + ["concat", "strip"], # tebd_input_mode + [ + "float64", + ], # precision + [False, True], # use_econf_tebd + ): + dtype = PRECISION_DICT[prec] + rtol, atol = get_tols(prec) + err_msg = f"idt={idt} prec={prec}" + + # dpa1 new impl + dd0 = DescrptDPA1( + self.rcut, + self.rcut_smth, + self.sel_mix, + self.nt, + attn_layer=2, + precision=prec, + resnet_dt=idt, + smooth_type_embedding=sm, + type_one_side=to, + tebd_input_mode=tm, + use_econf_tebd=ect, + type_map=["O", "H"] if ect else None, + seed=GLOBAL_SEED, + ).to(env.DEVICE) + dd0.se_atten.mean = paddle.to_tensor(davg, dtype=dtype).to( + device=env.DEVICE + ) + dd0.se_atten.stddev = paddle.to_tensor(dstd, dtype=dtype).to( + device=env.DEVICE + ) + rd0, _, _, _, _ = dd0( + paddle.to_tensor(self.coord_ext, dtype=dtype).to(device=env.DEVICE), + paddle.to_tensor(self.atype_ext, dtype="int64").to(device=env.DEVICE), + paddle.to_tensor(self.nlist, dtype="int64").to(device=env.DEVICE), + ) + # serialization + dd1 = DescrptDPA1.deserialize(dd0.serialize()) + rd1, _, _, _, _ = dd1( + paddle.to_tensor(self.coord_ext, dtype=dtype).to(device=env.DEVICE), + paddle.to_tensor(self.atype_ext, dtype="int64").to(device=env.DEVICE), + paddle.to_tensor(self.nlist, dtype="int64").to(device=env.DEVICE), + ) + np.testing.assert_allclose( + rd0.detach().cpu().numpy(), + rd1.detach().cpu().numpy(), + rtol=rtol, + atol=atol, + err_msg=err_msg, + ) + # dp impl + dd2 = DPDescrptDPA1.deserialize(dd0.serialize()) + rd2, _, _, _, _ = dd2.call( + self.coord_ext, + self.atype_ext, + self.nlist, + ) + np.testing.assert_allclose( + rd0.detach().cpu().numpy(), + rd2, + rtol=rtol, + atol=atol, + err_msg=err_msg, + ) + + def test_jit( + self, + ): + rng = np.random.default_rng(GLOBAL_SEED) + nf, nloc, nnei = self.nlist.shape + davg = rng.normal(size=(self.nt, nnei, 4)) + dstd = rng.normal(size=(self.nt, nnei, 4)) + dstd = 0.1 + np.abs(dstd) + + for idt, prec, sm, to, tm, ect in itertools.product( + [ + False, + ], # resnet_dt + [ + "float64", + ], # precision + [False, True], # smooth_type_embedding + [ + False, + ], # type_one_side + ["concat", "strip"], # tebd_input_mode + [False, True], # use_econf_tebd + ): + dtype = PRECISION_DICT[prec] + rtol, atol = get_tols(prec) + err_msg = f"idt={idt} prec={prec}" + # dpa1 new impl + dd0 = DescrptDPA1( + self.rcut, + self.rcut_smth, + self.sel, + self.nt, + precision=prec, + resnet_dt=idt, + smooth_type_embedding=sm, + type_one_side=to, + tebd_input_mode=tm, + use_econf_tebd=ect, + type_map=["O", "H"] if ect else None, + seed=GLOBAL_SEED, + ) + dd0.se_atten.mean = paddle.to_tensor(davg, dtype=dtype).to( + device=env.DEVICE + ) + dd0.se_atten.dstd = paddle.to_tensor(dstd, dtype=dtype).to( + device=env.DEVICE + ) + # dd1 = DescrptDPA1.deserialize(dd0.serialize()) + model = paddle.jit.to_static(dd0) + # model = paddle.jit.to_static(dd1) diff --git a/source/tests/pd/model/test_env_mat.py b/source/tests/pd/model/test_env_mat.py index 7cbc698264..bbdb7c75a3 100644 --- a/source/tests/pd/model/test_env_mat.py +++ b/source/tests/pd/model/test_env_mat.py @@ -22,7 +22,7 @@ class TestCaseSingleFrameWithNlist: - def setUp(self): + def setUp(self) -> None: # nloc == 3, nall == 4 self.nloc = 3 self.nall = 4 @@ -155,12 +155,12 @@ def setUp(self): # to be merged with the tf test case class TestEnvMat(unittest.TestCase, TestCaseSingleFrameWithNlist): - def setUp(self): + def setUp(self) -> None: TestCaseSingleFrameWithNlist.setUp(self) def test_consistency( self, - ): + ) -> None: rng = np.random.default_rng(GLOBAL_SEED) nf, nloc, nnei = self.nlist.shape davg = rng.normal(size=(self.nt, nnei, 4)) diff --git a/source/tests/pd/model/test_forward_lower.py b/source/tests/pd/model/test_forward_lower.py index ac8d0f54fc..db6497b605 100644 --- a/source/tests/pd/model/test_forward_lower.py +++ b/source/tests/pd/model/test_forward_lower.py @@ -96,7 +96,7 @@ def test( mixed_types=self.model.mixed_types(), box=cell.unsqueeze(0), ) - extended_spin = decomp.take_along_axis( + extended_spin = paddle.take_along_axis( spin.unsqueeze(0), indices=mapping.unsqueeze(-1).tile((1, 1, 3)), axis=1 ) input_dict = { @@ -146,7 +146,6 @@ def setUp(self): self.model = get_model(model_params).to(env.DEVICE) -@unittest.skip("Skip for not implemented yet") class TestEnergyModelDPA1(unittest.TestCase, ForwardLowerTest): def setUp(self): self.prec = 1e-10 diff --git a/source/tests/pd/model/test_null_input.py b/source/tests/pd/model/test_null_input.py index 9bf0860265..5d67491943 100644 --- a/source/tests/pd/model/test_null_input.py +++ b/source/tests/pd/model/test_null_input.py @@ -22,6 +22,7 @@ eval_model, ) from .test_permutation import ( + model_dpa1, model_se_e2_a, ) @@ -92,3 +93,10 @@ def setUp(self): model_params = copy.deepcopy(model_se_e2_a) self.type_split = False self.model = get_model(model_params).to(env.DEVICE) + + +class TestEnergyModelDPA1(unittest.TestCase, NullTest): + def setUp(self): + model_params = copy.deepcopy(model_dpa1) + self.type_split = True + self.model = get_model(model_params).to(env.DEVICE) diff --git a/source/tests/pd/model/test_permutation.py b/source/tests/pd/model/test_permutation.py index 8482ca7ffe..4543348d3b 100644 --- a/source/tests/pd/model/test_permutation.py +++ b/source/tests/pd/model/test_permutation.py @@ -3,6 +3,7 @@ import os import unittest +import numpy as np import paddle from deepmd.pd.model.model import ( @@ -22,7 +23,6 @@ CUR_DIR = os.path.dirname(__file__) dtype = paddle.float64 -import numpy as np model_se_e2_a = { "type_map": ["O", "H", "B"], @@ -344,7 +344,7 @@ class PermutationTest: def test( self, - ): + ) -> None: natoms = 5 generator = paddle.seed(GLOBAL_SEED) cell = paddle.rand([3, 3], dtype=dtype) @@ -395,7 +395,7 @@ def test( class TestEnergyModelSeA(unittest.TestCase, PermutationTest): - def setUp(self): + def setUp(self) -> None: model_params = copy.deepcopy(model_se_e2_a) self.type_split = False self.model = get_model(model_params).to(env.DEVICE) @@ -403,15 +403,14 @@ def setUp(self): @unittest.skip("Skip for not implemented yet") class TestDOSModelSeA(unittest.TestCase, PermutationTest): - def setUp(self): + def setUp(self) -> None: model_params = copy.deepcopy(model_dos) self.type_split = False self.model = get_model(model_params).to(env.DEVICE) -@unittest.skip("Skip for not implemented yet") class TestEnergyModelDPA1(unittest.TestCase, PermutationTest): - def setUp(self): + def setUp(self) -> None: model_params = copy.deepcopy(model_dpa1) self.type_split = True self.model = get_model(model_params).to(env.DEVICE) @@ -419,7 +418,7 @@ def setUp(self): @unittest.skip("Skip for not implemented yet") class TestEnergyModelDPA2(unittest.TestCase, PermutationTest): - def setUp(self): + def setUp(self) -> None: model_params = copy.deepcopy(model_dpa2) self.type_split = True self.model = get_model(model_params).to(env.DEVICE) @@ -427,7 +426,7 @@ def setUp(self): @unittest.skip("Skip for not implemented yet") class TestForceModelDPA2(unittest.TestCase, PermutationTest): - def setUp(self): + def setUp(self) -> None: model_params = copy.deepcopy(model_dpa2) model_params["fitting_net"]["type"] = "direct_force_ener" self.type_split = True @@ -437,7 +436,7 @@ def setUp(self): @unittest.skip("Skip for not implemented yet") class TestEnergyModelHybrid(unittest.TestCase, PermutationTest): - def setUp(self): + def setUp(self) -> None: model_params = copy.deepcopy(model_hybrid) self.type_split = True self.model = get_model(model_params).to(env.DEVICE) @@ -445,7 +444,7 @@ def setUp(self): @unittest.skip("Skip for not implemented yet") class TestForceModelHybrid(unittest.TestCase, PermutationTest): - def setUp(self): + def setUp(self) -> None: model_params = copy.deepcopy(model_hybrid) model_params["fitting_net"]["type"] = "direct_force_ener" self.type_split = True @@ -455,7 +454,7 @@ def setUp(self): @unittest.skip("Skip for not implemented yet") class TestEnergyModelZBL(unittest.TestCase, PermutationTest): - def setUp(self): + def setUp(self) -> None: model_params = copy.deepcopy(model_zbl) self.type_split = False self.model = get_model(model_params).to(env.DEVICE) @@ -463,7 +462,7 @@ def setUp(self): @unittest.skip("Skip for not implemented yet") class TestEnergyModelSpinSeA(unittest.TestCase, PermutationTest): - def setUp(self): + def setUp(self) -> None: model_params = copy.deepcopy(model_spin) self.type_split = False self.test_spin = True diff --git a/source/tests/pd/model/test_permutation_denoise.py b/source/tests/pd/model/test_permutation_denoise.py new file mode 100644 index 0000000000..a0de541f0b --- /dev/null +++ b/source/tests/pd/model/test_permutation_denoise.py @@ -0,0 +1,109 @@ +# SPDX-License-Identifier: LGPL-3.0-or-later +import copy +import unittest + +import numpy as np +import paddle + +from deepmd.pd.model.model import ( + get_model, +) +from deepmd.pd.utils import ( + env, +) +from deepmd.pd.utils.utils import ( + get_generator, +) + +from ...seed import ( + GLOBAL_SEED, +) +from ..common import ( + eval_model, +) +from .test_permutation import ( # model_dpau, + model_dpa1, + model_dpa2, + model_hybrid, +) + +dtype = paddle.float64 + +model_dpa1 = copy.deepcopy(model_dpa1) +model_dpa2 = copy.deepcopy(model_dpa2) +model_hybrid = copy.deepcopy(model_hybrid) +model_dpa1["type_map"] = ["O", "H", "B", "MASKED_TOKEN"] +model_dpa1.pop("fitting_net") +model_dpa2["type_map"] = ["O", "H", "B", "MASKED_TOKEN"] +model_dpa2.pop("fitting_net") +model_hybrid["type_map"] = ["O", "H", "B", "MASKED_TOKEN"] +model_hybrid.pop("fitting_net") + + +class PermutationDenoiseTest: + def test( + self, + ) -> None: + generator = get_generator(GLOBAL_SEED) + natoms = 5 + cell = paddle.rand([3, 3], dtype=dtype).to(env.DEVICE) + cell = (cell + cell.T) + 5.0 * paddle.eye(3).to(env.DEVICE) + coord = paddle.rand([natoms, 3], dtype=dtype).to(env.DEVICE) + coord = paddle.matmul(coord, cell) + atype = paddle.to_tensor([0, 0, 0, 1, 1]).to(env.DEVICE) + idx_perm = [1, 0, 4, 3, 2] + updated_c0, logits0 = eval_model( + self.model, coord.unsqueeze(0), cell.unsqueeze(0), atype, denoise=True + ) + ret0 = {"updated_coord": updated_c0.squeeze(0), "logits": logits0.squeeze(0)} + updated_c1, logits1 = eval_model( + self.model, + coord[idx_perm].unsqueeze(0), + cell.unsqueeze(0), + atype[idx_perm], + denoise=True, + ) + ret1 = {"updated_coord": updated_c1.squeeze(0), "logits": logits1.squeeze(0)} + prec = 1e-10 + np.testing.assert_allclose( + ret0["updated_coord"][idx_perm].numpy(), + ret1["updated_coord"].numpy(), + rtol=prec, + atol=prec, + ) + np.testing.assert_allclose( + ret0["logits"][idx_perm].numpy(), + ret1["logits"].numpy(), + rtol=prec, + atol=prec, + ) + + +@unittest.skip("support of the denoise is temporally disabled") +class TestDenoiseModelDPA1(unittest.TestCase, PermutationDenoiseTest): + def setUp(self) -> None: + model_params = copy.deepcopy(model_dpa1) + self.type_split = True + self.model = get_model(model_params).to(env.DEVICE) + + +@unittest.skip("support of the denoise is temporally disabled") +class TestDenoiseModelDPA2(unittest.TestCase, PermutationDenoiseTest): + def setUp(self) -> None: + model_params = copy.deepcopy(model_dpa2) + self.type_split = True + self.model = get_model( + model_params, + ).to(env.DEVICE) + + +# @unittest.skip("hybrid not supported at the moment") +# class TestDenoiseModelHybrid(unittest.TestCase, TestPermutationDenoise): +# def setUp(self): +# model_params = copy.deepcopy(model_hybrid_denoise) +# self.type_split = True +# self.model = get_model(model_params).to(env.DEVICE) + + +if __name__ == "__main__": + unittest.main() diff --git a/source/tests/pd/model/test_rot.py b/source/tests/pd/model/test_rot.py index 4d59117560..85c90dc60f 100644 --- a/source/tests/pd/model/test_rot.py +++ b/source/tests/pd/model/test_rot.py @@ -169,7 +169,6 @@ def setUp(self): self.model = get_model(model_params).to(env.DEVICE) -@unittest.skip("Skip for not implemented yet") class TestEnergyModelDPA1(unittest.TestCase, RotTest): def setUp(self): model_params = copy.deepcopy(model_dpa1) diff --git a/source/tests/pd/model/test_rot_denoise.py b/source/tests/pd/model/test_rot_denoise.py new file mode 100644 index 0000000000..74d5d41791 --- /dev/null +++ b/source/tests/pd/model/test_rot_denoise.py @@ -0,0 +1,124 @@ +# SPDX-License-Identifier: LGPL-3.0-or-later +import copy +import unittest + +import numpy as np +import paddle + +from deepmd.pd.model.model import ( + get_model, +) +from deepmd.pd.utils import ( + env, +) + +from ...seed import ( + GLOBAL_SEED, +) +from ..common import ( + eval_model, +) +from .test_permutation_denoise import ( # model_dpa2, + model_dpa1, +) + +dtype = paddle.float64 + + +class RotDenoiseTest: + def test( + self, + ): + generator = paddle.seed(GLOBAL_SEED) + prec = 1e-10 + natoms = 5 + cell = 10.0 * paddle.eye(3, dtype=dtype).to(env.DEVICE) + coord = 2 * paddle.rand([natoms, 3], dtype=dtype).to(device=env.DEVICE) + shift = paddle.to_tensor([4, 4, 4], dtype=dtype).to(env.DEVICE) + atype = paddle.to_tensor([0, 0, 0, 1, 1]).to(env.DEVICE) + from scipy.stats import ( + special_ortho_group, + ) + + rmat = paddle.to_tensor(special_ortho_group.rvs(3), dtype=dtype).to(env.DEVICE) + + # rotate only coord and shift to the center of cell + coord_rot = paddle.matmul(coord, rmat) + update_c0, logits0 = eval_model( + self.model, + (coord + shift).unsqueeze(0), + cell.unsqueeze(0), + atype, + denoise=True, + ) + update_c0 = update_c0 - (coord + shift).unsqueeze(0) + ret0 = {"updated_coord": update_c0.squeeze(0), "logits": logits0.squeeze(0)} + update_c1, logits1 = eval_model( + self.model, + (coord_rot + shift).unsqueeze(0), + cell.unsqueeze(0), + atype, + denoise=True, + ) + update_c1 = update_c1 - (coord_rot + shift).unsqueeze(0) + ret1 = {"updated_coord": update_c1.squeeze(0), "logits": logits1.squeeze(0)} + np.testing.assert_allclose( + paddle.matmul(ret0["updated_coord"], rmat).numpy(), + ret1["updated_coord"].numpy(), + rtol=prec, + atol=prec, + ) + np.testing.assert_allclose( + ret0["logits"].numpy(), ret1["logits"].numpy(), rtol=prec, atol=prec + ) + + # rotate coord and cell + paddle.seed(0) + cell = paddle.rand([3, 3], dtype=dtype).to(env.DEVICE) + cell = (cell + cell.T) + 5.0 * paddle.eye(3).to(env.DEVICE) + coord = paddle.rand([natoms, 3], dtype=dtype).to(env.DEVICE) + coord = paddle.matmul(coord, cell) + atype = paddle.to_tensor([0, 0, 0, 1, 1]).to(env.DEVICE) + coord_rot = paddle.matmul(coord, rmat) + cell_rot = paddle.matmul(cell, rmat) + update_c0, logits0 = eval_model( + self.model, coord.unsqueeze(0), cell.unsqueeze(0), atype, denoise=True + ) + ret0 = {"updated_coord": update_c0.squeeze(0), "logits": logits0.squeeze(0)} + update_c1, logits1 = eval_model( + self.model, + coord_rot.unsqueeze(0), + cell_rot.unsqueeze(0), + atype, + denoise=True, + ) + ret1 = {"updated_coord": update_c1.squeeze(0), "logits": logits1.squeeze(0)} + np.testing.assert_allclose( + ret0["logits"].numpy(), ret1["logits"].numpy(), rtol=prec, atol=prec + ) + np.testing.assert_allclose( + paddle.matmul(ret0["updated_coord"], rmat).numpy(), + ret1["updated_coord"].numpy(), + rtol=prec, + atol=prec, + ) + + +@unittest.skip("support of the denoise is temporally disabled") +class TestDenoiseModelDPA1(unittest.TestCase, RotDenoiseTest): + def setUp(self): + model_params = copy.deepcopy(model_dpa1) + self.type_split = True + self.model = get_model(model_params).to(env.DEVICE) + + +# @unittest.skip("hybrid not supported at the moment") +# class TestEnergyModelHybrid(unittest.TestCase, TestRotDenoise): +# def setUp(self): +# model_params = copy.deepcopy(model_hybrid_denoise) +# self.type_split = True +# self.model = get_model(model_params).to(env.DEVICE) + + +if __name__ == "__main__": + unittest.main() diff --git a/source/tests/pd/model/test_saveload_dpa1.py b/source/tests/pd/model/test_saveload_dpa1.py new file mode 100644 index 0000000000..54a82e479a --- /dev/null +++ b/source/tests/pd/model/test_saveload_dpa1.py @@ -0,0 +1,144 @@ +# SPDX-License-Identifier: LGPL-3.0-or-later +import copy +import json +import os +import unittest +from pathlib import ( + Path, +) + +import numpy as np +import paddle +from paddle.io import ( + DataLoader, +) + +from deepmd.pd.loss import ( + EnergyStdLoss, +) +from deepmd.pd.model.model import ( + get_model, +) +from deepmd.pd.train.wrapper import ( + ModelWrapper, +) +from deepmd.pd.utils import ( + env, +) +from deepmd.pd.utils.dataloader import ( + BufferedIterator, + DpLoaderSet, +) +from deepmd.pd.utils.stat import ( + make_stat_input, +) +from deepmd.tf.common import ( + expand_sys_str, +) + + +def get_dataset(config): + model_config = config["model"] + rcut = model_config["descriptor"]["rcut"] + sel = model_config["descriptor"]["sel"] + systems = config["training"]["validation_data"]["systems"] + if isinstance(systems, str): + systems = expand_sys_str(systems) + batch_size = config["training"]["training_data"]["batch_size"] + type_map = model_config["type_map"] + + dataset = DpLoaderSet(systems, batch_size, type_map) + data_stat_nbatch = model_config.get("data_stat_nbatch", 10) + sampled = make_stat_input(dataset.systems, dataset.dataloaders, data_stat_nbatch) + return dataset, sampled + + +class TestSaveLoadDPA1(unittest.TestCase): + def setUp(self): + input_json = str(Path(__file__).parent / "water/se_atten.json") + with open(input_json) as fin: + self.config = json.load(fin) + self.config["loss"]["starter_learning_rate"] = self.config["learning_rate"][ + "start_lr" + ] + data_file = [str(Path(__file__).parent / "water/data/data_0")] + self.config["training"]["training_data"]["systems"] = data_file + self.config["training"]["validation_data"]["systems"] = data_file + self.dataset, self.sampled = get_dataset(self.config) + self.training_dataloader = DataLoader( + self.dataset, + batch_sampler=paddle.io.BatchSampler( + sampler=paddle.io.RandomSampler(self.dataset), + drop_last=False, + ), + num_workers=0, # setting to 0 diverges the behavior of its iterator; should be >=1 + collate_fn=lambda x: x[0], + ) + device = paddle.get_device() + paddle.set_device("cpu") + self.training_data = BufferedIterator(iter(self.training_dataloader)) + paddle.set_device(device) + self.loss = EnergyStdLoss(**self.config["loss"]) + self.cur_lr = 1 + self.task_key = "Default" + self.input_dict, self.label_dict = self.get_data() + self.start_lr = self.config["learning_rate"]["start_lr"] + + def get_model_result(self, read=False, model_file="tmp_model.pd"): + wrapper = self.create_wrapper(read) + optimizer = paddle.optimizer.Adam( + learning_rate=self.start_lr, parameters=wrapper.parameters() + ) + optimizer.clear_grad() + if read: + wrapper.set_state_dict(paddle.load(model_file)) + os.remove(model_file) + else: + paddle.save(wrapper.state_dict(), model_file) + result = wrapper( + **self.input_dict, + cur_lr=self.cur_lr, + label=self.label_dict, + task_key=self.task_key, + )[0] + return result + + def create_wrapper(self, read: bool): + model_config = copy.deepcopy(self.config["model"]) + model_config["resuming"] = read + model_config["stat_file_dir"] = "stat_files" + model_config["stat_file"] = "stat.hdf5" + model_config["stat_file_path"] = os.path.join( + model_config["stat_file_dir"], model_config["stat_file"] + ) + model = get_model(model_config).to(env.DEVICE) + return ModelWrapper(model, self.loss) + + def get_data(self): + try: + batch_data = next(iter(self.training_data)) + except StopIteration: + # Refresh the status of the dataloader to start from a new epoch + self.training_data = BufferedIterator(iter(self.training_dataloader)) + batch_data = next(iter(self.training_data)) + input_dict = {} + for item in ["coord", "atype", "box"]: + if item in batch_data: + input_dict[item] = batch_data[item].to(env.DEVICE) + else: + input_dict[item] = None + label_dict = {} + for item in ["energy", "force", "virial"]: + if item in batch_data: + label_dict[item] = batch_data[item].to(env.DEVICE) + return input_dict, label_dict + + def test_saveload(self): + result1 = self.get_model_result() + result2 = self.get_model_result(read=True) + for item in result1: + np.testing.assert_allclose(result1[item].numpy(), result2[item].numpy()) + + +if __name__ == "__main__": + unittest.main() diff --git a/source/tests/pd/model/test_smooth.py b/source/tests/pd/model/test_smooth.py index 7f77a6f188..cc50043ad8 100644 --- a/source/tests/pd/model/test_smooth.py +++ b/source/tests/pd/model/test_smooth.py @@ -19,6 +19,7 @@ eval_model, ) from .test_permutation import ( # model_dpau, + model_dpa1, model_se_e2_a, ) @@ -153,6 +154,41 @@ def setUp(self): self.epsilon, self.aprec = None, None +class TestEnergyModelDPA1(unittest.TestCase, SmoothTest): + def setUp(self): + model_params = copy.deepcopy(model_dpa1) + self.type_split = True + self.model = get_model(model_params).to(env.DEVICE) + # less degree of smoothness, + # error can be systematically removed by reducing epsilon + self.epsilon = 1e-5 + self.aprec = 1e-5 + + +class TestEnergyModelDPA1Excl1(unittest.TestCase, SmoothTest): + def setUp(self): + model_params = copy.deepcopy(model_dpa1) + model_params["pair_exclude_types"] = [[0, 1]] + self.type_split = True + self.model = get_model(model_params).to(env.DEVICE) + # less degree of smoothness, + # error can be systematically removed by reducing epsilon + self.epsilon = 1e-5 + self.aprec = 1e-5 + + +class TestEnergyModelDPA1Excl12(unittest.TestCase, SmoothTest): + def setUp(self): + model_params = copy.deepcopy(model_dpa1) + model_params["pair_exclude_types"] = [[0, 1], [0, 2]] + self.type_split = True + self.model = get_model(model_params).to(env.DEVICE) + # less degree of smoothness, + # error can be systematically removed by reducing epsilon + self.epsilon = 1e-5 + self.aprec = 1e-5 + + # class TestEnergyFoo(unittest.TestCase): # def test(self): # model_params = model_dpau diff --git a/source/tests/pd/model/test_trans.py b/source/tests/pd/model/test_trans.py index f69d2f5b83..3fae49d598 100644 --- a/source/tests/pd/model/test_trans.py +++ b/source/tests/pd/model/test_trans.py @@ -103,7 +103,6 @@ def setUp(self): self.model = get_model(model_params).to(env.DEVICE) -@unittest.skip("Skip for not implemented yet") class TestEnergyModelDPA1(unittest.TestCase, TransTest): def setUp(self): model_params = copy.deepcopy(model_dpa1) diff --git a/source/tests/pd/model/test_trans_denoise.py b/source/tests/pd/model/test_trans_denoise.py new file mode 100644 index 0000000000..8317d4d2ae --- /dev/null +++ b/source/tests/pd/model/test_trans_denoise.py @@ -0,0 +1,95 @@ +# SPDX-License-Identifier: LGPL-3.0-or-later +import copy +import unittest + +import numpy as np +import paddle + +from deepmd.pd.model.model import ( + get_model, +) +from deepmd.pd.utils import ( + env, +) + +from ...seed import ( + GLOBAL_SEED, +) +from ..common import ( + eval_model, +) +from .test_permutation_denoise import ( + model_dpa1, + model_dpa2, + model_hybrid, +) + +dtype = paddle.float64 + + +class TransDenoiseTest: + def test( + self, + ): + natoms = 5 + generator = paddle.seed(GLOBAL_SEED) + cell = paddle.rand([3, 3], dtype=dtype).to(env.DEVICE) + cell = (cell + cell.T) + 5.0 * paddle.eye(3).to(env.DEVICE) + coord = paddle.rand([natoms, 3], dtype=dtype).to(env.DEVICE) + coord = paddle.matmul(coord, cell) + atype = paddle.to_tensor([0, 0, 0, 1, 1]).to(env.DEVICE) + shift = (paddle.rand([3], dtype=dtype) - 0.5).to(env.DEVICE) * 2.0 + coord_s = paddle.matmul( + paddle.remainder( + paddle.matmul(coord + shift, paddle.linalg.inv(cell)), 1.0 + ), + cell, + ) + updated_c0, logits0 = eval_model( + self.model, coord.unsqueeze(0), cell.unsqueeze(0), atype, denoise=True + ) + updated_c0 = updated_c0 - coord.unsqueeze(0) + ret0 = {"updated_coord": updated_c0.squeeze(0), "logits": logits0.squeeze(0)} + updated_c1, logits1 = eval_model( + self.model, coord_s.unsqueeze(0), cell.unsqueeze(0), atype, denoise=True + ) + updated_c1 = updated_c1 - coord_s.unsqueeze(0) + ret1 = {"updated_coord": updated_c1.squeeze(0), "logits": logits1.squeeze(0)} + prec = 1e-10 + np.testing.assert_allclose( + ret0["updated_coord"].numpy(), + ret1["updated_coord"].numpy(), + rtol=prec, + atol=prec, + ) + np.testing.assert_allclose( + ret0["logits"].numpy(), ret1["logits"].numpy(), rtol=prec, atol=prec + ) + + +@unittest.skip("support of the denoise is temporally disabled") +class TestDenoiseModelDPA1(unittest.TestCase, TransDenoiseTest): + def setUp(self): + model_params = copy.deepcopy(model_dpa1) + self.type_split = True + self.model = get_model(model_params).to(env.DEVICE) + + +@unittest.skip("support of the denoise is temporally disabled") +class TestDenoiseModelDPA2(unittest.TestCase, TransDenoiseTest): + def setUp(self): + model_params = copy.deepcopy(model_dpa2) + self.type_split = True + self.model = get_model(model_params).to(env.DEVICE) + + +@unittest.skip("hybrid not supported at the moment") +class TestDenoiseModelHybrid(unittest.TestCase, TransDenoiseTest): + def setUp(self): + model_params = copy.deepcopy(model_hybrid) + self.type_split = True + self.model = get_model(model_params).to(env.DEVICE) + + +if __name__ == "__main__": + unittest.main() diff --git a/source/tests/pd/model/water/multitask_sharefit.json b/source/tests/pd/model/water/multitask_sharefit.json new file mode 100644 index 0000000000..246b5992f7 --- /dev/null +++ b/source/tests/pd/model/water/multitask_sharefit.json @@ -0,0 +1,134 @@ +{ + "model": { + "shared_dict": { + "my_type_map": [ + "O", + "H", + "B" + ], + "my_descriptor": { + "type": "se_e2_a", + "sel": [ + 46, + 92, + 4 + ], + "rcut_smth": 0.50, + "rcut": 6.00, + "neuron": [ + 25, + 50, + 100 + ], + "resnet_dt": false, + "axis_neuron": 16, + "seed": 1, + "_comment": " that's all" + }, + "my_fitting": { + "dim_case_embd": 2, + "neuron": [ + 240, + 240, + 240 + ], + "resnet_dt": true, + "seed": 1, + "_comment": " that's all" + }, + "_comment": "that's all" + }, + "model_dict": { + "model_1": { + "type_map": "my_type_map", + "descriptor": "my_descriptor", + "fitting_net": "my_fitting", + "data_stat_nbatch": 1 + }, + "model_2": { + "type_map": "my_type_map", + "descriptor": "my_descriptor", + "fitting_net": "my_fitting", + "data_stat_nbatch": 1 + } + } + }, + "learning_rate": { + "type": "exp", + "decay_steps": 5000, + "start_lr": 0.0002, + "decay_rate": 0.98, + "stop_lr": 3.51e-08, + "_comment": "that's all" + }, + "loss_dict": { + "model_1": { + "type": "ener", + "start_pref_e": 0.02, + "limit_pref_e": 1, + "start_pref_f": 1000, + "limit_pref_f": 1, + "start_pref_v": 0, + "limit_pref_v": 0 + }, + "model_2": { + "type": "ener", + "start_pref_e": 0.02, + "limit_pref_e": 1, + "start_pref_f": 1000, + "limit_pref_f": 1, + "start_pref_v": 0, + "limit_pref_v": 0 + } + }, + "training": { + "model_prob": { + "model_1": 0.5, + "model_2": 0.5 + }, + "data_dict": { + "model_1": { + "stat_file": "./stat_files/model_1.hdf5", + "training_data": { + "systems": [ + "pt/water/data/data_0" + ], + "batch_size": 1, + "_comment": "that's all" + }, + "validation_data": { + "systems": [ + "pt/water/data/data_0" + ], + "batch_size": 1, + "_comment": "that's all" + } + }, + "model_2": { + "stat_file": "./stat_files/model_2.hdf5", + "training_data": { + "systems": [ + "pt/water/data/data_0" + ], + "batch_size": 1, + "_comment": "that's all" + }, + "validation_data": { + "systems": [ + "pt/water/data/data_0" + ], + "batch_size": 1, + "_comment": "that's all" + } + } + }, + "numb_steps": 100000, + "warmup_steps": 0, + "gradient_max_norm": 5.0, + "seed": 10, + "disp_file": "lcurve.out", + "disp_freq": 100, + "save_freq": 100, + "_comment": "that's all" + } +} diff --git a/source/tests/pd/test_decomp.py b/source/tests/pd/test_decomp.py index d8439ad994..c554083bda 100644 --- a/source/tests/pd/test_decomp.py +++ b/source/tests/pd/test_decomp.py @@ -17,50 +17,6 @@ class TestDecomp(unittest.TestCase): def setUp(self): paddle.seed(GLOBAL_SEED) - def test_softmax_decomp(self): - raw_api = paddle.nn.functional.softmax - decomp_api = decomp.softmax - - raw_input = paddle.randn([100, 100], "float32") - raw_output = raw_api(raw_input) - decomp_output = decomp_api(raw_input) - - np.testing.assert_allclose( - raw_output.numpy(), - decomp_output.numpy(), - 1e-6, - 1e-8, - ) - - def test_norm_decomp(self): - raw_api = paddle.linalg.norm - decomp_api = decomp.norm - - raw_input = paddle.randn([100, 100], "float32") - raw_output = raw_api(raw_input, p=2, axis=-1) - decomp_output = decomp_api(raw_input, p=2, axis=-1) - - np.testing.assert_allclose( - raw_output.numpy(), - decomp_output.numpy(), - 1e-5, - 1e-8, - ) - - def test_take_along_axis_decomp(self): - raw_api = paddle.take_along_axis - decomp_api = decomp.take_along_axis - - raw_input = paddle.randn([100, 100], "float32") - raw_indices = paddle.randint(0, 100, [100, 2]) - raw_output = raw_api(raw_input, raw_indices, axis=-1) - decomp_output = decomp_api(raw_input, raw_indices, axis=-1) - - np.testing.assert_equal( - raw_output.numpy(), - decomp_output.numpy(), - ) - def test_scatter_reduce_decomp(self): raw_api = paddle.put_along_axis decomp_api = decomp.scatter_reduce @@ -112,20 +68,3 @@ def test_masked_add_(self): raw_output.numpy(), raw_input.numpy(), # inplace ) - - def test_normalize_decomp(self): - raw_api = paddle.nn.functional.normalize - decomp_api = decomp.normalize_decomp - - raw_input = paddle.randn([100, 100], "float32") - axis = -1 - - raw_output = raw_api(raw_input, p=2, axis=axis) - decomp_output = decomp_api(raw_input, p=2, axis=axis) - - np.testing.assert_allclose( - raw_output.numpy(), - decomp_output.numpy(), # inplace - 1e-5, - 1e-8, - ) diff --git a/source/tests/pd/test_finetune.py b/source/tests/pd/test_finetune.py index 2c6cca83aa..f82f7a8cd0 100644 --- a/source/tests/pd/test_finetune.py +++ b/source/tests/pd/test_finetune.py @@ -341,7 +341,6 @@ def setUp(self): self.testkey = "dos" -@unittest.skip("Skip for not implemented yet") class TestEnergyModelDPA1(FinetuneTest, unittest.TestCase): def setUp(self): input_json = str(Path(__file__).parent / "water/se_atten.json") diff --git a/source/tests/pd/test_multitask.py b/source/tests/pd/test_multitask.py index 65210d07b3..d59990dcca 100644 --- a/source/tests/pd/test_multitask.py +++ b/source/tests/pd/test_multitask.py @@ -29,23 +29,24 @@ ) from .model.test_permutation import ( + model_dpa1, model_se_e2_a, ) -def setUpModule(): +def setUpModule() -> None: global multitask_template multitask_template_json = str(Path(__file__).parent / "water/multitask.json") with open(multitask_template_json) as f: multitask_template = json.load(f) -@unittest.skip("Skip until solving cuda error 709 in jit.save") class MultiTaskTrainTest: - def test_multitask_train(self): + def test_multitask_train(self) -> None: # test multitask training self.config = update_deepmd_input(self.config, warning=True) self.config = normalize(self.config, multi_task=True) + self.share_fitting = getattr(self, "share_fitting", False) trainer = get_trainer(deepcopy(self.config), shared_links=self.shared_links) trainer.run() # check model keys @@ -60,7 +61,12 @@ def test_multitask_train(self): self.assertIn(state_key.replace("model_1", "model_2"), multi_state_dict) if "model_2" in state_key: self.assertIn(state_key.replace("model_2", "model_1"), multi_state_dict) - if "model_1.descriptor" in state_key: + if ("model_1.atomic_model.descriptor" in state_key) or ( + self.share_fitting + and "model_1.atomic_model.fitting_net" in state_key + and "fitting_net.bias_atom_e" not in state_key + and "fitting_net.case_embd" not in state_key + ): np.testing.assert_allclose( multi_state_dict[state_key].numpy(), multi_state_dict[state_key.replace("model_1", "model_2")].numpy(), @@ -172,7 +178,7 @@ def test_multitask_train(self): trainer_finetune.run() self.tearDown() - def tearDown(self): + def tearDown(self) -> None: for f in os.listdir("."): if f.startswith("model") and f.endswith(".pd"): os.remove(f) @@ -182,9 +188,8 @@ def tearDown(self): shutil.rmtree(f) -@unittest.skip("Skip until solving cuda error 709 in jit.save") class TestMultiTaskSeA(unittest.TestCase, MultiTaskTrainTest): - def setUp(self): + def setUp(self) -> None: multitask_se_e2_a = deepcopy(multitask_template) multitask_se_e2_a["model"]["shared_dict"]["my_descriptor"] = model_se_e2_a[ "descriptor" @@ -222,5 +227,44 @@ def tearDown(self) -> None: MultiTaskTrainTest.tearDown(self) +class TestMultiTaskDPA1(unittest.TestCase, MultiTaskTrainTest): + def setUp(self) -> None: + multitask_DPA1 = deepcopy(multitask_template) + multitask_DPA1["model"]["shared_dict"]["my_descriptor"] = model_dpa1[ + "descriptor" + ] + data_file = [str(Path(__file__).parent / "water/data/data_0")] + self.stat_files = "DPA1" + os.makedirs(self.stat_files, exist_ok=True) + self.config = multitask_DPA1 + self.config["training"]["data_dict"]["model_1"]["training_data"]["systems"] = ( + data_file + ) + self.config["training"]["data_dict"]["model_1"]["validation_data"][ + "systems" + ] = data_file + self.config["training"]["data_dict"]["model_1"]["stat_file"] = ( + f"{self.stat_files}/model_1" + ) + self.config["training"]["data_dict"]["model_2"]["training_data"]["systems"] = ( + data_file + ) + self.config["training"]["data_dict"]["model_2"]["validation_data"][ + "systems" + ] = data_file + self.config["training"]["data_dict"]["model_2"]["stat_file"] = ( + f"{self.stat_files}/model_2" + ) + self.config["training"]["numb_steps"] = 1 + self.config["training"]["save_freq"] = 1 + self.origin_config = deepcopy(self.config) + self.config["model"], self.shared_links = preprocess_shared_params( + self.config["model"] + ) + + def tearDown(self) -> None: + MultiTaskTrainTest.tearDown(self) + + if __name__ == "__main__": unittest.main() diff --git a/source/tests/pd/test_training.py b/source/tests/pd/test_training.py index d4e7309a65..c3d65c09df 100644 --- a/source/tests/pd/test_training.py +++ b/source/tests/pd/test_training.py @@ -15,17 +15,21 @@ from deepmd.pd.entrypoints.main import ( get_trainer, ) +from deepmd.pd.utils.env import ( + enable_prim, +) from deepmd.pd.utils.finetune import ( get_finetune_rules, ) from .model.test_permutation import ( + model_dpa1, model_se_e2_a, ) class DPTrainTest: - def test_dp_train(self): + def test_dp_train(self) -> None: # test training from scratch trainer = get_trainer(deepcopy(self.config)) trainer.run() @@ -95,7 +99,7 @@ def test_dp_train(self): trainer_finetune_empty.run() trainer_finetune_random.run() - def test_trainable(self): + def test_trainable(self) -> None: fix_params = deepcopy(self.config) fix_params["model"]["descriptor"]["trainable"] = False fix_params["model"]["fitting_net"]["trainable"] = False @@ -124,7 +128,7 @@ def test_trainable(self): model_dict_after_training[key].numpy(), ) - def tearDown(self): + def tearDown(self) -> None: for f in os.listdir("."): if f.startswith("model") and f.endswith(".pd"): os.remove(f) @@ -135,7 +139,7 @@ def tearDown(self): class TestEnergyModelSeA(unittest.TestCase, DPTrainTest): - def setUp(self): + def setUp(self) -> None: input_json = str(Path(__file__).parent / "water/se_atten.json") with open(input_json) as f: self.config = json.load(f) @@ -145,6 +149,9 @@ def setUp(self): self.config["model"] = deepcopy(model_se_e2_a) self.config["training"]["numb_steps"] = 1 self.config["training"]["save_freq"] = 1 + # import paddle + enable_prim(True) + # assert paddle.framework.core._is_eager_prim_enabled() def tearDown(self) -> None: DPTrainTest.tearDown(self) @@ -153,7 +160,7 @@ def tearDown(self) -> None: class TestFparam(unittest.TestCase, DPTrainTest): """Test if `fparam` can be loaded correctly.""" - def setUp(self): + def setUp(self) -> None: input_json = str(Path(__file__).parent / "water/se_atten.json") with open(input_json) as f: self.config = json.load(f) @@ -172,5 +179,21 @@ def tearDown(self) -> None: DPTrainTest.tearDown(self) +class TestEnergyModelDPA1(unittest.TestCase, DPTrainTest): + def setUp(self) -> None: + input_json = str(Path(__file__).parent / "water/se_atten.json") + with open(input_json) as f: + self.config = json.load(f) + data_file = [str(Path(__file__).parent / "water/data/data_0")] + self.config["training"]["training_data"]["systems"] = data_file + self.config["training"]["validation_data"]["systems"] = data_file + self.config["model"] = deepcopy(model_dpa1) + self.config["training"]["numb_steps"] = 1 + self.config["training"]["save_freq"] = 1 + + def tearDown(self) -> None: + DPTrainTest.tearDown(self) + + if __name__ == "__main__": unittest.main() From 104fc365ed8d6cef0c0583be755cc4c0e961cbe9 Mon Sep 17 00:00:00 2001 From: Chun Cai Date: Wed, 18 Dec 2024 06:37:03 +0800 Subject: [PATCH 3/6] Perf: use fused Adam optimizer (#4463) This PR sets the Adam optimizer to use the `fused=True` parameter. For the profiling result shown below, this modification brings an 2.75x improvement on optimizer update (22ms vs. 8ms) and ~3% improvement for total speed up (922ms vs. 892ms). The benchmark case is training a DPA-2 Q3 release model. Please note that the absolute time may differs between steps.
Before

![image](https://github.com/user-attachments/assets/d6b05a1d-6e6c-478d-921f-c497718bc551)

After

![image](https://github.com/user-attachments/assets/b216b919-094c-441f-96a7-146e1e3db483)

[Ref](https://pytorch.org/docs/stable/generated/torch.optim.Adam.html): > The foreach and fused implementations are typically faster than the for-loop, single-tensor implementation, with **fused being theoretically fastest** with both vertical and horizontal fusion. As such, if the user has not specified either flag (i.e., when foreach = fused = None), we will attempt defaulting to the foreach implementation when the tensors are all on CUDA. Why not fused? Since the fused implementation is relatively new, we want to give it sufficient bake-in time. ## Summary by CodeRabbit - **Bug Fixes** - Improved optimizer performance during training by modifying the initialization of the Adam optimizer. - **Documentation** - Updated method signature for clarity in the `Trainer` class. --- deepmd/pt/train/training.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/deepmd/pt/train/training.py b/deepmd/pt/train/training.py index 72e84d577a..8ca510492c 100644 --- a/deepmd/pt/train/training.py +++ b/deepmd/pt/train/training.py @@ -579,7 +579,7 @@ def warm_up_linear(step, warmup_steps): # author: iProzd if self.opt_type == "Adam": self.optimizer = torch.optim.Adam( - self.wrapper.parameters(), lr=self.lr_exp.start_lr + self.wrapper.parameters(), lr=self.lr_exp.start_lr, fused=True ) if optimizer_state_dict is not None and self.restart_training: self.optimizer.load_state_dict(optimizer_state_dict) From fe6a92eb9ab8726aaa3feaf7e026541efafb1353 Mon Sep 17 00:00:00 2001 From: Duo <50307526+iProzd@users.noreply.github.com> Date: Thu, 19 Dec 2024 00:25:15 +0800 Subject: [PATCH 4/6] Update dpa3.py --- deepmd/pt/model/descriptor/dpa3.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/deepmd/pt/model/descriptor/dpa3.py b/deepmd/pt/model/descriptor/dpa3.py index e526e6f82b..c7141e376d 100644 --- a/deepmd/pt/model/descriptor/dpa3.py +++ b/deepmd/pt/model/descriptor/dpa3.py @@ -269,7 +269,7 @@ def share_params(self, base_class, shared_level, resume=False) -> None: # share all parameters in type_embedding, repflow if shared_level == 0: self._modules["type_embedding"] = base_class._modules["type_embedding"] - self.repflows.share_params(base_class.repflow, 0, resume=resume) + self.repflows.share_params(base_class.repflows, 0, resume=resume) # shared_level: 1 # share all parameters in type_embedding elif shared_level == 1: From 20a60c611e0ee6acb95a1adf26b10735288b5adc Mon Sep 17 00:00:00 2001 From: Duo <50307526+iProzd@users.noreply.github.com> Date: Wed, 11 Dec 2024 22:55:44 +0800 Subject: [PATCH 5/6] add mae --- deepmd/pt/loss/ener.py | 71 ++++++++++++++++++++++------------------ deepmd/utils/argcheck.py | 6 ++++ 2 files changed, 46 insertions(+), 31 deletions(-) diff --git a/deepmd/pt/loss/ener.py b/deepmd/pt/loss/ener.py index 327d75c2cd..b66f4a5b09 100644 --- a/deepmd/pt/loss/ener.py +++ b/deepmd/pt/loss/ener.py @@ -187,28 +187,26 @@ def forward(self, input_dict, model, label, natoms, learning_rate, mae=False): ) # more_loss['log_keys'].append('rmse_e') else: # use l1 and for all atoms + energy_pred = energy_pred * atom_norm + energy_label = energy_label * atom_norm l1_ener_loss = F.l1_loss( energy_pred.reshape(-1), energy_label.reshape(-1), - reduction="sum", + reduction="mean", ) loss += pref_e * l1_ener_loss more_loss["mae_e"] = self.display_if_exist( - F.l1_loss( - energy_pred.reshape(-1), - energy_label.reshape(-1), - reduction="mean", - ).detach(), + l1_ener_loss.detach(), find_energy, ) # more_loss['log_keys'].append('rmse_e') - if mae: - mae_e = torch.mean(torch.abs(energy_pred - energy_label)) * atom_norm - more_loss["mae_e"] = self.display_if_exist(mae_e.detach(), find_energy) - mae_e_all = torch.mean(torch.abs(energy_pred - energy_label)) - more_loss["mae_e_all"] = self.display_if_exist( - mae_e_all.detach(), find_energy - ) + # if mae: + # mae_e = torch.mean(torch.abs(energy_pred - energy_label)) * atom_norm + # more_loss["mae_e"] = self.display_if_exist(mae_e.detach(), find_energy) + # mae_e_all = torch.mean(torch.abs(energy_pred - energy_label)) + # more_loss["mae_e_all"] = self.display_if_exist( + # mae_e_all.detach(), find_energy + # ) if ( (self.has_f or self.has_pf or self.relative_f or self.has_gf) @@ -241,17 +239,17 @@ def forward(self, input_dict, model, label, natoms, learning_rate, mae=False): rmse_f.detach(), find_force ) else: - l1_force_loss = F.l1_loss(force_label, force_pred, reduction="none") + l1_force_loss = F.l1_loss(force_label, force_pred, reduction="mean") more_loss["mae_f"] = self.display_if_exist( - l1_force_loss.mean().detach(), find_force + l1_force_loss.detach(), find_force ) - l1_force_loss = l1_force_loss.sum(-1).mean(-1).sum() + # l1_force_loss = l1_force_loss.sum(-1).mean(-1).sum() loss += (pref_f * l1_force_loss).to(GLOBAL_PT_FLOAT_PRECISION) - if mae: - mae_f = torch.mean(torch.abs(diff_f)) - more_loss["mae_f"] = self.display_if_exist( - mae_f.detach(), find_force - ) + # if mae: + # mae_f = torch.mean(torch.abs(diff_f)) + # more_loss["mae_f"] = self.display_if_exist( + # mae_f.detach(), find_force + # ) if self.has_pf and "atom_pref" in label: atom_pref = label["atom_pref"] @@ -297,18 +295,29 @@ def forward(self, input_dict, model, label, natoms, learning_rate, mae=False): if self.has_v and "virial" in model_pred and "virial" in label: find_virial = label.get("find_virial", 0.0) pref_v = pref_v * find_virial + virial_label = label["virial"] + virial_pred = model_pred["virial"].reshape(-1, 9) diff_v = label["virial"] - model_pred["virial"].reshape(-1, 9) - l2_virial_loss = torch.mean(torch.square(diff_v)) - if not self.inference: - more_loss["l2_virial_loss"] = self.display_if_exist( - l2_virial_loss.detach(), find_virial + if not self.use_l1_all: + l2_virial_loss = torch.mean(torch.square(diff_v)) + if not self.inference: + more_loss["l2_virial_loss"] = self.display_if_exist( + l2_virial_loss.detach(), find_virial + ) + loss += atom_norm * (pref_v * l2_virial_loss) + rmse_v = l2_virial_loss.sqrt() * atom_norm + more_loss["rmse_v"] = self.display_if_exist( + rmse_v.detach(), find_virial + ) + else: + l1_virial_loss = F.l1_loss(virial_label, virial_pred, reduction="mean") + more_loss["mae_v"] = self.display_if_exist( + l1_virial_loss.detach(), find_virial ) - loss += atom_norm * (pref_v * l2_virial_loss) - rmse_v = l2_virial_loss.sqrt() * atom_norm - more_loss["rmse_v"] = self.display_if_exist(rmse_v.detach(), find_virial) - if mae: - mae_v = torch.mean(torch.abs(diff_v)) * atom_norm - more_loss["mae_v"] = self.display_if_exist(mae_v.detach(), find_virial) + loss += (pref_v * l1_virial_loss).to(GLOBAL_PT_FLOAT_PRECISION) + # if mae: + # mae_v = torch.mean(torch.abs(diff_v)) * atom_norm + # more_loss["mae_v"] = self.display_if_exist(mae_v.detach(), find_virial) if self.has_ae and "atom_energy" in model_pred and "atom_ener" in label: atom_ener = model_pred["atom_energy"] diff --git a/deepmd/utils/argcheck.py b/deepmd/utils/argcheck.py index 237bd1003d..b8c1403f2b 100644 --- a/deepmd/utils/argcheck.py +++ b/deepmd/utils/argcheck.py @@ -2346,6 +2346,12 @@ def loss_ener(): doc_relative_f = "If provided, relative force error will be used in the loss. The difference of force will be normalized by the magnitude of the force in the label with a shift given by `relative_f`, i.e. DF_i / ( || F || + relative_f ) with DF denoting the difference between prediction and label and || F || denoting the L2 norm of the label." doc_enable_atom_ener_coeff = "If true, the energy will be computed as \\sum_i c_i E_i. c_i should be provided by file atom_ener_coeff.npy in each data system, otherwise it's 1." return [ + Argument( + "use_l1_all", + bool, + optional=True, + default=False, + ), Argument( "start_pref_e", [float, int], From 1309e26f134c26dd56942417eaca7a5296e25494 Mon Sep 17 00:00:00 2001 From: Duo <50307526+iProzd@users.noreply.github.com> Date: Mon, 23 Dec 2024 22:18:55 +0800 Subject: [PATCH 6/6] add compress --- deepmd/dpmodel/descriptor/dpa3.py | 7 ++ deepmd/pt/model/descriptor/dpa3.py | 1 + deepmd/pt/model/descriptor/repflow_layer.py | 75 ++++++++++++++++--- deepmd/pt/model/descriptor/repflows.py | 7 ++ deepmd/utils/argcheck.py | 8 ++ source/tests/pt/model/test_dpa3.py | 6 ++ .../dpmodel/descriptor/test_descriptor.py | 3 + 7 files changed, 98 insertions(+), 9 deletions(-) diff --git a/deepmd/dpmodel/descriptor/dpa3.py b/deepmd/dpmodel/descriptor/dpa3.py index df1a2ae258..e1e8632b0e 100644 --- a/deepmd/dpmodel/descriptor/dpa3.py +++ b/deepmd/dpmodel/descriptor/dpa3.py @@ -14,6 +14,7 @@ def __init__( a_rcut: float = 4.0, a_rcut_smth: float = 3.5, a_sel: int = 20, + a_compress_rate: int = 0, axis_neuron: int = 4, update_angle: bool = True, update_style: str = "res_residual", @@ -44,6 +45,10 @@ def __init__( Where to start smoothing for angle. For example the 1/r term is smoothed from rcut to rcut_smth. a_sel : int, optional Maximally possible number of selected angle neighbors. + a_compress_rate : int, optional + The compression rate for angular messages. The default value is 0, indicating no compression. + If a non-zero integer c is provided, the node and edge dimensions will be compressed + to n_dim/c and e_dim/2c, respectively, within the angular message. axis_neuron : int, optional The number of dimension of submatrix in the symmetrization ops. update_angle : bool, optional @@ -71,6 +76,7 @@ def __init__( self.a_rcut = a_rcut self.a_rcut_smth = a_rcut_smth self.a_sel = a_sel + self.a_compress_rate = a_compress_rate self.axis_neuron = axis_neuron self.update_angle = update_angle self.update_style = update_style @@ -95,6 +101,7 @@ def serialize(self) -> dict: "a_rcut": self.a_rcut, "a_rcut_smth": self.a_rcut_smth, "a_sel": self.a_sel, + "a_compress_rate": self.a_compress_rate, "axis_neuron": self.axis_neuron, "update_angle": self.update_angle, "update_style": self.update_style, diff --git a/deepmd/pt/model/descriptor/dpa3.py b/deepmd/pt/model/descriptor/dpa3.py index c7141e376d..c5cfd9cb89 100644 --- a/deepmd/pt/model/descriptor/dpa3.py +++ b/deepmd/pt/model/descriptor/dpa3.py @@ -151,6 +151,7 @@ def init_subclass_params(sub_data, sub_class): n_dim=self.repflow_args.n_dim, e_dim=self.repflow_args.e_dim, a_dim=self.repflow_args.a_dim, + a_compress_rate=self.repflow_args.a_compress_rate, axis_neuron=self.repflow_args.axis_neuron, update_angle=self.repflow_args.update_angle, activation_function=self.activation_function, diff --git a/deepmd/pt/model/descriptor/repflow_layer.py b/deepmd/pt/model/descriptor/repflow_layer.py index bbbdb3e20e..94c4945c76 100644 --- a/deepmd/pt/model/descriptor/repflow_layer.py +++ b/deepmd/pt/model/descriptor/repflow_layer.py @@ -45,6 +45,7 @@ def __init__( n_dim: int = 128, e_dim: int = 16, a_dim: int = 64, + a_compress_rate: int = 0, axis_neuron: int = 4, update_angle: bool = True, # angle activation_function: str = "silu", @@ -70,6 +71,12 @@ def __init__( self.n_dim = n_dim self.e_dim = e_dim self.a_dim = a_dim + self.a_compress_rate = a_compress_rate + if a_compress_rate != 0: + assert a_dim % (2 * a_compress_rate) == 0, ( + f"For a_compress_rate of {a_compress_rate}, a_dim must be divisible by {2 * a_compress_rate}. " + f"Currently, a_dim={a_dim} is not valid." + ) self.axis_neuron = axis_neuron self.update_angle = update_angle self.activation_function = activation_function @@ -167,20 +174,42 @@ def __init__( ) if self.update_angle: - self.angle_dim = self.a_dim + self.n_dim + 2 * self.e_dim + self.angle_dim = self.a_dim + if self.a_compress_rate == 0: + # angle + node + edge * 2 + self.angle_dim += self.n_dim + 2 * self.e_dim + self.a_compress_n_linear = None + self.a_compress_e_linear = None + else: + # angle + node/c + edge/2c * 2 + self.angle_dim += 2 * (self.a_dim // self.a_compress_rate) + self.a_compress_n_linear = MLPLayer( + self.n_dim, + self.a_dim // self.a_compress_rate, + precision=precision, + bias=False, + seed=child_seed(seed, 8), + ) + self.a_compress_e_linear = MLPLayer( + self.e_dim, + self.a_dim // (2 * self.a_compress_rate), + precision=precision, + bias=False, + seed=child_seed(seed, 9), + ) # edge angle message self.edge_angle_linear1 = MLPLayer( self.angle_dim, self.e_dim, precision=precision, - seed=child_seed(seed, 8), + seed=child_seed(seed, 10), ) self.edge_angle_linear2 = MLPLayer( self.e_dim, self.e_dim, precision=precision, - seed=child_seed(seed, 9), + seed=child_seed(seed, 11), ) if self.update_style == "res_residual": self.e_residual.append( @@ -189,7 +218,7 @@ def __init__( self.update_residual, self.update_residual_init, precision=precision, - seed=child_seed(seed, 10), + seed=child_seed(seed, 12), ) ) @@ -198,7 +227,7 @@ def __init__( self.angle_dim, self.a_dim, precision=precision, - seed=child_seed(seed, 11), + seed=child_seed(seed, 13), ) if self.update_style == "res_residual": self.a_residual.append( @@ -207,13 +236,15 @@ def __init__( self.update_residual, self.update_residual_init, precision=precision, - seed=child_seed(seed, 12), + seed=child_seed(seed, 14), ) ) else: self.angle_self_linear = None self.edge_angle_linear1 = None self.edge_angle_linear2 = None + self.a_compress_n_linear = None + self.a_compress_e_linear = None self.angle_dim = 0 self.n_residual = nn.ParameterList(self.n_residual) @@ -448,12 +479,22 @@ def forward( assert self.edge_angle_linear1 is not None assert self.edge_angle_linear2 is not None # get angle info + if self.a_compress_rate != 0: + assert self.a_compress_n_linear is not None + assert self.a_compress_e_linear is not None + node_ebd_for_angle = self.a_compress_n_linear(node_ebd) + edge_ebd_for_angle = self.a_compress_e_linear(edge_ebd) + else: + node_ebd_for_angle = node_ebd + edge_ebd_for_angle = edge_ebd + # nb x nloc x a_nnei x a_nnei x n_dim node_for_angle_info = torch.tile( - node_ebd.unsqueeze(2).unsqueeze(2), (1, 1, self.a_sel, self.a_sel, 1) + node_ebd_for_angle.unsqueeze(2).unsqueeze(2), + (1, 1, self.a_sel, self.a_sel, 1), ) # nb x nloc x a_nnei x e_dim - edge_for_angle = edge_ebd[:, :, : self.a_sel, :] + edge_for_angle = edge_ebd_for_angle[:, :, : self.a_sel, :] # nb x nloc x a_nnei x e_dim edge_for_angle = torch.where( a_nlist_mask.unsqueeze(-1), edge_for_angle, 0.0 @@ -471,7 +512,7 @@ def forward( [edge_for_angle_i, edge_for_angle_j], dim=-1 ) angle_info_list = [angle_ebd, node_for_angle_info, edge_for_angle_info] - # nb x nloc x a_nnei x a_nnei x (a + n_dim + e_dim*2) + # nb x nloc x a_nnei x a_nnei x (a + n_dim + e_dim*2) or (a + a/c + a/c) angle_info = torch.cat(angle_info_list, dim=-1) # edge angle message @@ -605,6 +646,7 @@ def serialize(self) -> dict: "n_dim": self.n_dim, "e_dim": self.e_dim, "a_dim": self.a_dim, + "a_compress_rate": self.a_compress_rate, "axis_neuron": self.axis_neuron, "activation_function": self.activation_function, "update_angle": self.update_angle, @@ -625,6 +667,13 @@ def serialize(self) -> dict: "angle_self_linear": self.angle_self_linear.serialize(), } ) + if self.a_compress_rate != 0: + data.update( + { + "a_compress_n_linear": self.a_compress_n_linear.serialize(), + "a_compress_e_linear": self.a_compress_e_linear.serialize(), + } + ) if self.update_style == "res_residual": data.update( { @@ -650,6 +699,7 @@ def deserialize(cls, data: dict) -> "RepFlowLayer": check_version_compatibility(data.pop("@version"), 1, 1) data.pop("@class") update_angle = data["update_angle"] + a_compress_rate = data["a_compress_rate"] node_self_mlp = data.pop("node_self_mlp") node_sym_linear = data.pop("node_sym_linear") node_edge_linear = data.pop("node_edge_linear") @@ -657,6 +707,8 @@ def deserialize(cls, data: dict) -> "RepFlowLayer": edge_angle_linear1 = data.pop("edge_angle_linear1", None) edge_angle_linear2 = data.pop("edge_angle_linear2", None) angle_self_linear = data.pop("angle_self_linear", None) + a_compress_n_linear = data.pop("a_compress_n_linear", None) + a_compress_e_linear = data.pop("a_compress_e_linear", None) update_style = data["update_style"] variables = data.pop("@variables", {}) n_residual = variables.get("n_residual", data.pop("n_residual", [])) @@ -676,6 +728,11 @@ def deserialize(cls, data: dict) -> "RepFlowLayer": obj.edge_angle_linear1 = MLPLayer.deserialize(edge_angle_linear1) obj.edge_angle_linear2 = MLPLayer.deserialize(edge_angle_linear2) obj.angle_self_linear = MLPLayer.deserialize(angle_self_linear) + if a_compress_rate != 0: + assert isinstance(a_compress_n_linear, dict) + assert isinstance(a_compress_e_linear, dict) + obj.a_compress_n_linear = MLPLayer.deserialize(a_compress_n_linear) + obj.a_compress_e_linear = MLPLayer.deserialize(a_compress_e_linear) if update_style == "res_residual": for ii, t in enumerate(obj.n_residual): diff --git a/deepmd/pt/model/descriptor/repflows.py b/deepmd/pt/model/descriptor/repflows.py index 302f020754..e8ad3a78e0 100644 --- a/deepmd/pt/model/descriptor/repflows.py +++ b/deepmd/pt/model/descriptor/repflows.py @@ -85,6 +85,7 @@ def __init__( n_dim: int = 128, e_dim: int = 64, a_dim: int = 64, + a_compress_rate: int = 0, axis_neuron: int = 4, update_angle: bool = True, activation_function: str = "silu", @@ -122,6 +123,10 @@ def __init__( Where to start smoothing for angle. For example the 1/r term is smoothed from rcut to rcut_smth. a_sel : int, optional Maximally possible number of selected angle neighbors. + a_compress_rate : int, optional + The compression rate for angular messages. The default value is 0, indicating no compression. + If a non-zero integer c is provided, the node and edge dimensions will be compressed + to n_dim/c and e_dim/2c, respectively, within the angular message. axis_neuron : int, optional The number of dimension of submatrix in the symmetrization ops. update_angle : bool, optional @@ -174,6 +179,7 @@ def __init__( self.rcut_smth = e_rcut_smth self.sec = self.sel self.split_sel = self.sel + self.a_compress_rate = a_compress_rate self.axis_neuron = axis_neuron self.set_davg_zero = set_davg_zero @@ -216,6 +222,7 @@ def __init__( n_dim=self.n_dim, e_dim=self.e_dim, a_dim=self.a_dim, + a_compress_rate=self.a_compress_rate, axis_neuron=self.axis_neuron, update_angle=self.update_angle, activation_function=self.activation_function, diff --git a/deepmd/utils/argcheck.py b/deepmd/utils/argcheck.py index b8c1403f2b..bf78e195b8 100644 --- a/deepmd/utils/argcheck.py +++ b/deepmd/utils/argcheck.py @@ -1440,6 +1440,11 @@ def dpa3_repflow_args(): doc_a_sel = 'Maximally possible number of selected angle neighbors. It can be:\n\n\ - `int`. The maximum number of neighbor atoms to be considered. We recommend it to be less than 200. \n\n\ - `str`. Can be "auto:factor" or "auto". "factor" is a float number larger than 1. This option will automatically determine the `sel`. In detail it counts the maximal number of neighbors with in the cutoff radius for each type of neighbor, then multiply the maximum by the "factor". Finally the number is wrapped up to 4 divisible. The option "auto" is equivalent to "auto:1.1".' + doc_a_compress_rate = ( + "The compression rate for angular messages. The default value is 0, indicating no compression. " + " If a non-zero integer c is provided, the node and edge dimensions will be compressed " + "to n_dim/c and e_dim/2c, respectively, within the angular message." + ) doc_axis_neuron = "The number of dimension of submatrix in the symmetrization ops." doc_update_angle = ( "Where to update the angle rep. If not, only node and edge rep will be used." @@ -1475,6 +1480,9 @@ def dpa3_repflow_args(): Argument("a_rcut", float, doc=doc_a_rcut), Argument("a_rcut_smth", float, doc=doc_a_rcut_smth), Argument("a_sel", [int, str], doc=doc_a_sel), + Argument( + "a_compress_rate", int, optional=True, default=0, doc=doc_a_compress_rate + ), Argument( "axis_neuron", int, diff --git a/source/tests/pt/model/test_dpa3.py b/source/tests/pt/model/test_dpa3.py index 300ff44bdd..701726a631 100644 --- a/source/tests/pt/model/test_dpa3.py +++ b/source/tests/pt/model/test_dpa3.py @@ -48,12 +48,14 @@ def test_consistency( ua, rus, ruri, + acr, prec, ect, ) in itertools.product( [True, False], # update_angle ["res_residual"], # update_style ["norm", "const"], # update_residual_init + [0, 1], # a_compress_rate ["float64"], # precision [False], # use_econf_tebd ): @@ -73,6 +75,7 @@ def test_consistency( a_rcut=self.rcut - 0.1, a_rcut_smth=self.rcut_smth, a_sel=nnei - 1, + a_compress_rate=acr, axis_neuron=4, update_angle=ua, update_style=rus, @@ -127,12 +130,14 @@ def test_jit( ua, rus, ruri, + acr, prec, ect, ) in itertools.product( [True, False], # update_angle ["res_residual"], # update_style ["norm", "const"], # update_residual_init + [0, 1], # a_compress_rate ["float64"], # precision [False], # use_econf_tebd ): @@ -150,6 +155,7 @@ def test_jit( a_rcut=self.rcut - 0.1, a_rcut_smth=self.rcut_smth, a_sel=nnei - 1, + a_compress_rate=acr, axis_neuron=4, update_angle=ua, update_style=rus, diff --git a/source/tests/universal/dpmodel/descriptor/test_descriptor.py b/source/tests/universal/dpmodel/descriptor/test_descriptor.py index 1d55ee085b..df13a7ff92 100644 --- a/source/tests/universal/dpmodel/descriptor/test_descriptor.py +++ b/source/tests/universal/dpmodel/descriptor/test_descriptor.py @@ -475,6 +475,7 @@ def DescriptorParamDPA3( update_residual=0.1, update_residual_init="const", update_angle=True, + a_compress_rate=0, precision="float64", ): input_dict = { @@ -491,6 +492,7 @@ def DescriptorParamDPA3( "a_rcut": rcut / 2, "a_rcut_smth": rcut_smth / 2, "a_sel": sum(sel) // 4, + "a_compress_rate": a_compress_rate, "axis_neuron": 4, "update_angle": update_angle, "update_style": update_style, @@ -520,6 +522,7 @@ def DescriptorParamDPA3( "update_residual_init": ("const",), "exclude_types": ([], [[0, 1]]), "update_angle": (True, False), + "a_compress_rate": (0, 1), "env_protection": (0.0, 1e-8), "precision": ("float64",), }