-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcmd_cram_freemux2.cpp
668 lines (589 loc) · 26.1 KB
/
cmd_cram_freemux2.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
#include "cramore.h"
#include "bcf_filtered_reader.h"
#include "sam_filtered_reader.h"
#include "sc_drop_seq.h"
#include "louvain.h"
#include <ctime>
///////////////////////////////////////////////////////////////////
// Freemuxlet : Genotype-free deconvolution of scRNA-seq doublets
//////////////////////////////////////////////////////////////////
int32_t cmdCramFreemux2(int32_t argc, char** argv) {
//std::string gtfFile;
std::string outPrefix;
std::string plpPrefix;
std::string initClusterFile;
int32_t capBQ = 20;
int32_t minBQ = 13;
//std::vector<double> gridAlpha;
double doublet_prior = 0.5;
double geno_error = 0.1;
std::string groupList;
int32_t minTotalReads = 0;
int32_t minUMIs = 0;
int32_t minCoveredSNPs = 0;
int32_t nSamples = 0;
double singletScoreThres = -1e300;
double bfThres = 5.41;
double fracInitClust = 1.00; // use 50% of cells for initial clustering
bool auxFiles = false;
int32_t initIteration = 10;
bool keepInitMissing = false;
bool randomizeSingletScore = false;
int32_t randomSeed = 0;
paramList pl;
BEGIN_LONG_PARAMS(longParameters)
LONG_PARAM_GROUP("Options for input pileup", NULL)
LONG_STRING_PARAM("plp",&plpPrefix, "Prefix of input files generated by dsc-pileup")
LONG_STRING_PARAM("init-cluster",&initClusterFile, "Input file containing the initial cluster information")
LONG_PARAM_GROUP("Output Options", NULL)
LONG_STRING_PARAM("out",&outPrefix,"Output file prefix")
// LONG_MULTI_DOUBLE_PARAM("alpha",&gridAlpha, "Grid of alpha to search for (default is 0, 0.5)")
LONG_INT_PARAM("nsample",&nSamples,"Number of samples multiplexed together")
LONG_PARAM("aux-files", &auxFiles, "Turn on writing auxilary output files")
LONG_INT_PARAM("verbose", &globalVerbosityThreshold, "Turn on verbose mode with specific verbosity threshold. 0: fully verbose, 100 : no verbose messages")
LONG_PARAM_GROUP("Options for statistical inference", NULL)
LONG_DOUBLE_PARAM("doublet-prior",&doublet_prior, "Prior of doublet")
LONG_DOUBLE_PARAM("geno-error",&geno_error, "Genotype error parameter per cluster")
LONG_DOUBLE_PARAM("bf-thres",&bfThres,"Bayes Factor Threshold used in the initial clustering")
LONG_DOUBLE_PARAM("frac-init-clust",&fracInitClust,"Fraction of droplets to be clustered in the very first round of initial clustering procedure")
LONG_INT_PARAM("iter-init",&initIteration, "Iteration for initial cluster assignment (set to zero to skip the iterations)")
LONG_PARAM("keep-init-missing",&keepInitMissing, "Keep missing cluster assignment as missing in the initial iteration")
LONG_PARAM("randomize-singlet-score",&randomizeSingletScore, "Randomize the singlet scores to test its effect")
LONG_INT_PARAM("seed",&randomSeed,"Seed for random number (use clocks if not set)")
LONG_PARAM_GROUP("Read filtering Options", NULL)
LONG_INT_PARAM("cap-BQ", &capBQ, "Maximum base quality (higher BQ will be capped)")
LONG_INT_PARAM("min-BQ", &minBQ, "Minimum base quality to consider (lower BQ will be skipped)")
LONG_PARAM_GROUP("Cell/droplet filtering options", NULL)
LONG_STRING_PARAM("group-list",&groupList, "List of tag readgroup/cell barcode to consider in this run. All other barcodes will be ignored. This is useful for parallelized run")
LONG_INT_PARAM("min-total", &minTotalReads, "Minimum number of total reads for a droplet/cell to be considered")
LONG_INT_PARAM("min-umi", &minUMIs, "Minimum number of UMIs for a droplet/cell to be considered")
LONG_INT_PARAM("min-snp", &minCoveredSNPs, "Minimum number of SNPs with coverage for a droplet/cell to be considered")
END_LONG_PARAMS();
pl.Add(new longParams("Available Options", longParameters));
pl.Read(argc, argv);
pl.Status();
if ( plpPrefix.empty() || outPrefix.empty() || ( nSamples == 0 ) )
error("Missing required option(s) : --plp, --out, --nsample");
sc_dropseq_lib_t scl;
scl.minRead = minTotalReads;
scl.minUMI = minUMIs;
scl.minSNP = minCoveredSNPs;
scl.capBQ = capBQ;
scl.minBQ = minBQ;
if ( !groupList.empty() ) {
scl.load_valid_barcodes(groupList.c_str());
}
scl.load_from_plp(plpPrefix.c_str());
std::map<std::string, int32_t> initCluster;
// if initial clusters are provided, use them here
if ( !initClusterFile.empty() ) {
tsv_reader tsv_clustf(initClusterFile.c_str());
while ( tsv_clustf.read_line() > 0 ) {
if ( tsv_clustf.nfields != 2 )
error("ERROR: Initial clustering file %d has to have 2 columnes", initClusterFile.c_str());
int32_t iclust = tsv_clustf.int_field_at(1);
if ( iclust >= 0 ) {
if ( iclust >= nSamples )
error("ERROR: --nsample %d parameter was set. The cluster ID must be between 0 to %d, or use negative values to not assign initial cluster (not implemented yet)", nSamples, nSamples-1);
initCluster[tsv_clustf.str_field_at(0)] = iclust;
}
}
}
// sort cells based on the number of SNP-overlapping unique reads using singlet scores
htsFile* wmix = NULL;
std::vector<int32_t> nSNPs(scl.nbcs,0);
std::vector<int32_t> nReads(scl.nbcs,0);
wmix = hts_open((outPrefix+".lmix").c_str(),"w");
hprintf(wmix, "INT_ID\tBARCODE\tNSNPs\tNREADs\tDBL.LLK\tSNG.LLK\tBF.SINGLET\tBF.SINGLET.PER.SNP\n");
std::vector< std::map<int32_t,snp_droplet_pileup*> > cell_snp_plps(scl.nbcs);
std::vector< std::map<int32_t,snp_droplet_pileup*> > snp_cell_plps(scl.nsnps);
for(int32_t i=0; i < scl.nbcs; ++i) {
int32_t si = i; // drops_srted[i];
if (i % 1000 == 0 )
notice("Processing singlet scores for %d droplets..", i+1);
// likelihood calculation across the overlapping SNPs
std::map<int32_t,sc_snp_droplet_t* >::iterator it = scl.cell_umis[si].begin();
double llk0 = 0, llk2 = 0; // LLK of IBD0, IBD1, IBD2
while( it != scl.cell_umis[si].end() ) {
//double gls[9] = {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0};
double af = scl.snps[it->first].af;
// calculate genotype likelihoods
// calculate_snp_droplet_doublet_GL(it->second, gls, 0.5);
if ( cell_snp_plps[i][it->first] == NULL )
cell_snp_plps[i][it->first] = snp_cell_plps[it->first][i] = new snp_droplet_pileup;
calculate_snp_droplet_pileup(it->second, cell_snp_plps[i][it->first], 0.5);
double* gls = cell_snp_plps[i][it->first]->gls;
double lk0 = 0, lk2 = 0;
double gps[3];
gps[0] = (1.0-af) * (1.0-af);
gps[1] = 2.0 * af * (1.0-af);
gps[2] = af * af;
for(int32_t gi=0; gi < 3; ++gi) {
lk2 += ( gls[gi*3 + gi] * gps[gi] );
for(int32_t gj=0; gj < 3; ++gj) {
lk0 += ( gls[gi*3 + gj] * gps[gi] * gps[gj] );
}
}
nReads[i] += (int32_t)it->second->size();
++nSNPs[i];
++it;
llk0 += log(lk0);
llk2 += log(lk2);
}
scl.cell_scores[si] = llk2 - llk0; // score of being singlet
hprintf(wmix,"%d\t%s\t%d\t%d\t%.2lf\t%.2lf\t%.2lf\t%.4lf\n", si, scl.bcs[si].c_str(), nSNPs[i], nReads[i], llk0, llk2, llk2-llk0, (llk2-llk0)/nSNPs[i]);
}
hts_close(wmix);
if ( randomSeed == 0 )
srand(std::time(0));
else
srand(randomSeed);
// randomize singlet scores
if ( randomizeSingletScore ) {
for(int32_t i=0; i < scl.nbcs-1; ++i) {
// randomly pick from [i, scl.nbcs)
int32_t j = i + rand() % (scl.nbcs-i);
if ( i < j ) {
double tmp = scl.cell_scores[j];
scl.cell_scores[j] = scl.cell_scores[i];
scl.cell_scores[i] = tmp;
}
}
}
// sort droplets by singlet scores
std::vector<int32_t> drops_srted(scl.nbcs);
for(int32_t i=0; i < scl.nbcs; ++i) {
drops_srted[i] = i;
}
sc_drop_comp_t sdc(&scl);
std::sort( drops_srted.begin(), drops_srted.end(), sdc );
std::vector<int32_t> clusts(scl.nbcs,-1);
std::vector<int32_t> ccounts(nSamples,0);
std::vector<int32_t> types(scl.nbcs,-1);
// initial clustering
// calculate pairwise genetic distances on demand while clustering
// use the assigned clusters if already provided
if ( !initClusterFile.empty() ) {
int32_t nmiss = 0;
for(int32_t i=0; i < scl.nbcs; ++i) {
std::map<std::string,int32_t>::iterator it =
initCluster.find(scl.bcs[i]);
if ( it == initCluster.end() ) {
++nmiss;
//error("ERROR: Cannot find the initial cluster for barcode %s", scl.bcs[i].c_str());
}
else {
clusts[i] = it->second;
types[i] = 0;
++ccounts[it->second];
}
}
if ( nmiss > 0 ) {
warning("WARNING: %d of %d droplets do not have initial cluster assignment", nmiss, scl.nbcs);
}
}
else { // greedy clustering
// maintains GLs for each cluster, initially, everything is set up to be empty for each variant.
std::vector< std::map<int32_t,snp_droplet_pileup> > clustPileup(nSamples);
// greedy initial clustering
double sumMaxScore = 0;
for(int32_t i=0; i < scl.nbcs; ++i) {
int32_t si = drops_srted[i];
if ( i > scl.nbcs * fracInitClust ) continue; // skip the droplet if exceed initial fraction of cells to be clustered.
if ( scl.cell_scores[si] < singletScoreThres ) continue; // skip the droplet if singlet score threshold is not met.
// compute the distance with each clusters
std::vector<dropD> dropDs;
for(int32_t j=0; j < nSamples; ++j) {
// compute genetic distance with each droplet
dropDs.push_back(scl.calculate_droplet_clust_distance(cell_snp_plps[si], clustPileup[j]));
}
int32_t maxClust = 0;
double maxScore = dropDs[0].llk2 - dropDs[0].llk0;
for(int32_t j=1; j < nSamples; ++j) {
if ( dropDs[j].llk2 - dropDs[j].llk0 > maxScore ) {
maxClust = j;
maxScore = dropDs[j].llk2 - dropDs[j].llk0;
}
}
clusts[si] = maxClust;
types[si] = 0;
++ccounts[maxClust];
sumMaxScore += maxScore;
for(std::map<int32_t,snp_droplet_pileup*>::const_iterator it = cell_snp_plps[si].begin();
it != cell_snp_plps[si].end(); ++it) {
clustPileup[clusts[si]][it->first].merge(*it->second);
}
if ( i % 100 == 0 ) {
std::string s;
catprintf(s, "Processing %d droplets. Avg maxScore = %.5lg. Cluster counts:", i+1, sumMaxScore/(i+1));
for(int32_t j=0; j < nSamples; ++j)
catprintf(s, " %d",ccounts[j]);
notice(s.c_str());
}
}
}
notice("Finished assigning initial identity of the cluster..");
if ( auxFiles ) {
htsFile* wc0 = hts_open((outPrefix+".clust0.samples.gz").c_str(),"wz");
hprintf(wc0, "INT_ID\tBARCODE\tCLUST0\n");
//std::vector< std::vector<int32_t> > iclusts(nSamples);
for(int32_t i=0; i < scl.nbcs; ++i) {
hprintf(wc0, "%d\t%s\t%d\n", i, scl.bcs[i].c_str(), clusts[i]);
//iclusts[clusts[i]].push_back(i);
}
hts_close(wc0);
}
// create pileups for each cluster
std::vector< std::map<int32_t,snp_droplet_pileup> > clustPileup(nSamples);
std::vector<bool> snps_observed(scl.nsnps,false);
for(int32_t i=0; i < scl.nbcs; ++i) {
std::map<int32_t,snp_droplet_pileup*>::const_iterator it = cell_snp_plps[i].begin();
while(it != cell_snp_plps[i].end()) {
if ( clusts[i] >= 0 )
clustPileup[clusts[i]][it->first].merge(*it->second);
snps_observed[it->first] = true;
++it;
}
}
time_t now = std::time(NULL);
tm *ltm = localtime(&now);
// write initial clusters
if ( auxFiles ) {
htsFile* vc0 = hts_open((outPrefix+".clust0.vcf.gz").c_str(),"wz");
hprintf(vc0,"##fileformat=VCFv4.2\n");
hprintf(vc0,"##fileDate=%04d%02d%02d\n",1970+ltm->tm_year,1+ltm->tm_mon,ltm->tm_mday);
hprintf(vc0,"##source=cramore-freemuxlet\n");
for(int32_t i=0; i < (int32_t)scl.rid2chr.size(); ++i)
hprintf(vc0, "##contig=<ID=%s>\n", scl.rid2chr[i].c_str());
hprintf(vc0,"##INFO=<ID=AF,Number=A,Type=Float,Description=\"Allele Frequency\">\n");
hprintf(vc0,"##FORMAT=<ID=GT,Number=1,Type=String,Description=\"Genotype\">\n");
hprintf(vc0,"##FORMAT=<ID=GQ,Number=1,Type=Integer,Description=\"Phred-scale Genotype Quality\">\n");
hprintf(vc0,"##FORMAT=<ID=DP,Number=1,Type=Integer,Description=\"Read Depth\">\n");
hprintf(vc0,"##FORMAT=<ID=AD,Number=R,Type=Integer,Description=\"Allelic Read Depth\">\n");
hprintf(vc0,"##FORMAT=<ID=PL,Number=G,Type=Integer,Description=\"Phred-scale genotype likelihood\">\n");
hprintf(vc0,"##FORMAT=<ID=GP,Number=G,Type=Float,Description=\"Posterior probability using pooled allele frequencies\">\n");
hprintf(vc0,"#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT");
for(int32_t i=0; i < nSamples; ++i) hprintf(vc0, "\tCLUST%d", i);
hprintf(vc0, "\n");
for(int32_t v=0; v < scl.nsnps; ++v) {
if ( !snps_observed[v] ) continue;
sc_snp_t& s = scl.snps[v];
hprintf(vc0,"%s\t%d\t.\t%c\t%c\t.\tPASS\tAF=%.5lf\tGT:GQ:DP:AD:PL:GP",scl.rid2chr[s.rid].c_str(),s.pos,s.ref,s.alt,s.af);
double gps[3] = { (1-s.af)*(1-s.af), 2.*s.af*(1-s.af), s.af*s.af };
double pps[3], sumPP;
int32_t pls[3];
int bestG, gq;
for(int32_t i=0; i < nSamples; ++i) {
snp_droplet_pileup& sdp = clustPileup[i][v];
double maxGL = sdp.gls[0];
if ( maxGL < sdp.gls[4] ) maxGL = sdp.gls[4];
if ( maxGL < sdp.gls[8] ) maxGL = sdp.gls[8];
pls[0] = (int)(-10.0*log10(sdp.gls[0]/maxGL));
pls[1] = (int)(-10.0*log10(sdp.gls[4]/maxGL));
pls[2] = (int)(-10.0*log10(sdp.gls[8]/maxGL));
pps[0] = gps[0] * sdp.gls[0] / maxGL + 1e-100;
pps[1] = gps[1] * sdp.gls[4] / maxGL + 1e-100;
pps[2] = gps[2] * sdp.gls[8] / maxGL + 1e-100;
sumPP = pps[0] + pps[1] + pps[2];
pps[0] /= sumPP;
pps[1] /= sumPP;
pps[2] /= sumPP;
bestG = ( pps[0] > pps[1] ) ? ( pps[0] > pps[2] ? 0 : 2 ) : ( pps[1] > pps[2] ? 1 : 2 );
gq = (int)(-0.1*log10(1-pps[bestG]+1e-100));
if ( gq > 255 ) gq = 255;
//hprintf(vc0,"\t%d/%d:%d:%d:%d,%d:%d,%d,%d",bestG == 2 ? 1 : 0, bestG > 0 ? 1 : 0, gq, sdp.nreads,sdp.nref,sdp.nalt,pls[0],pls[1],pls[2]);
hprintf(vc0,"\t%d/%d:%d:%d:%d,%d:%d,%d,%d:%.3lg,%.3lg,%.3lg",bestG == 2 ? 1 : 0, bestG > 0 ? 1 : 0, gq, sdp.nreads,sdp.nref,sdp.nalt,pls[0], pls[1], pls[2], pps[0], pps[1], pps[2]);
}
hprintf(vc0,"\n");
}
hts_close(vc0);
}
std::vector<int32_t> jBests(scl.nbcs,-1);
std::vector<int32_t> kBests(scl.nbcs,-1);
std::vector<int32_t> jNexts(scl.nbcs,-1);
std::vector<int32_t> kNexts(scl.nbcs,-1);
std::vector<double> bestLLKs(scl.nbcs,-1e300);
std::vector<double> nextLLKs(scl.nbcs,-1e300);
std::vector<double> sngBestLLKs(scl.nbcs,-1e300);
std::vector<double> sngNextLLKs(scl.nbcs,-1e300);
std::vector<int32_t> sBests(scl.nbcs,-1);
std::vector<int32_t> sNexts(scl.nbcs,-1);
std::vector<int32_t> dBest1s(scl.nbcs,-1);
std::vector<int32_t> dBest2s(scl.nbcs,-1);
std::vector<int32_t> dNext1s(scl.nbcs,-1);
std::vector<int32_t> dNext2s(scl.nbcs,-1);
std::vector<double> dblBestLLKs(scl.nbcs,-1e300);
std::vector<double> dblNextLLKs(scl.nbcs,-1e300);
// posterior probs
std::vector<double> bestPPs(scl.nbcs,-1e300);
std::vector<double> sngPPs(scl.nbcs,-1e300);
std::vector<double> sngOnlyPPs(scl.nbcs,-1e300);
std::vector<double> sumLLKs(scl.nbcs,-1e300);
// calculate probabilities of singlets/doublets
int32_t max_iter = 10;
for(int32_t iter=0; iter < max_iter; ++iter) {
notice("Inferring doublets and refining clusters.., iter = %d", iter+1);
double gp1s[3], gp2s[3], gp0s[3], sum1, sum2;
int32_t npairs = nSamples*(nSamples+1)/2;
double log_single_prior = log((1.0-doublet_prior)/nSamples);
double log_double_prior = log(doublet_prior/nSamples/(nSamples-1)*2.0);
// iterate each barcode, and identify the best matching cluster
for(int32_t i=0; i < scl.nbcs; ++i) {
std::vector<double> llks(npairs, 0);
std::map<int32_t,snp_droplet_pileup*>::iterator it;
for(it = cell_snp_plps[i].begin(); it != cell_snp_plps[i].end(); ++it) {
double af = scl.snps[it->first].af;
gp0s[0] = (1.0-af)*(1.0-af);
gp0s[1] = 2*af*(1.0-af);
gp0s[2] = af*af;
std::vector<double> lks(npairs, 0);
double lk;
double* glis = it->second->gls;
for(int32_t j=0; j < nSamples; ++j) { // compare with each possible cluster
snp_droplet_pileup& sdp1 = clustPileup[j][it->first];
//if ( ( types[i] == 0 ) && ( clusts[i] == j ) ) { // leave one droplet out
// gp1s[0] = (1.0-af)*(1.0-af)*sdp1.gls[0]/(glis[0] > 1e-100 ? glis[0] : 1e-100);
// gp1s[1] = 2*af*(1.0-af)*sdp1.gls[4]/(glis[4] > 1e-100 ? glis[4] : 1e-100);
// gp1s[2] = af*af*sdp1.gls[8]/(glis[8] > 1e-100 ? glis[8] : 1e-100);
//}
//else {
gp1s[0] = (1.0-af)*(1.0-af)*sdp1.gls[0];
gp1s[1] = 2*af*(1.0-af)*sdp1.gls[4];
gp1s[2] = af*af*sdp1.gls[8];
//}
sum1 = gp1s[0]+gp1s[1]+gp1s[2];
gp1s[0] /= sum1;
gp1s[1] /= sum1;
gp1s[2] /= sum1;
if ( geno_error > 0 ) {
//if ( ( geno_error > 0 ) && ( iter + 1 == max_iter ) ) {
gp1s[0] = (1-geno_error)*gp1s[0] + geno_error*gp0s[0];
gp1s[1] = (1-geno_error)*gp1s[1] + geno_error*gp0s[1];
gp1s[2] = (1-geno_error)*gp1s[2] + geno_error*gp0s[2]; // gp1s represents original
}
for(int32_t k=0; k < j; ++k) { // look at pairs of clusters
snp_droplet_pileup& sdp2 = clustPileup[k][it->first];
// Pr(D|g1,g2)Pr(g1|C1)Pr(g2|C2)Pr(C1)Pr(C2)
//if ( ( types[i] == 0 ) && ( clusts[i] == k ) ) { // leave one droplet out
// gp1s[0] = (1.0-af)*(1.0-af)*sdp2.gls[0]/(glis[0] > 1e-100 ? glis[0] : 1e-100);
// gp1s[1] = 2*af*(1.0-af)*sdp2.gls[4]/(glis[4] > 1e-100 ? glis[4] : 1e-100);
// gp1s[2] = af*af*sdp2.gls[8]/(glis[8] > 1e-100 ? glis[8] : 1e-100);
//}
//else {
gp2s[0] = (1.0-af)*(1.0-af)*sdp2.gls[0];
gp2s[1] = 2*af*(1.0-af)*sdp2.gls[4];
gp2s[2] = af*af*sdp2.gls[8];
//}
sum2 = gp2s[0]+gp2s[1]+gp2s[2];
gp2s[0] /= sum2;
gp2s[1] /= sum2;
gp2s[2] /= sum2;
if ( geno_error > 0 ) {
//if ( ( geno_error > 0 ) && ( iter + 1 == max_iter ) ) {
gp2s[0] = (1-geno_error)*gp2s[0] + geno_error*gp0s[0];
gp2s[1] = (1-geno_error)*gp2s[1] + geno_error*gp0s[1];
gp2s[2] = (1-geno_error)*gp2s[2] + geno_error*gp0s[2];
}
lk = 0;
for(int32_t g1=0; g1 < 3; ++g1) {
for(int32_t g2=0; g2 < 3; ++g2) {
lk += ( glis[g1*3+g2] * gp1s[g1] * gp2s[g2] );
}
}
lks[j*(j+1)/2+k] = lk;
}
lk = 0;
for(int32_t g1=0; g1 < 3; ++g1) {
lk += ( glis[g1*3+g1] * gp1s[g1] );
}
lks[j*(j+1)/2+j] = lk;
}
for(int32_t i=0; i < npairs; ++i)
llks[i] += log(lks[i]);
}
//int32_t jBest = -1, kBest = -1, jNext = -1, kNext = -1;
int32_t sBest = -1, sNext = -1, dBest1 = -1, dBest2 = -1, dNext1 = -1, dNext2 = -1;
//double bestLLK = -1e300;
//double nextLLK = -1e300;
double sngBestLLK = -1e300;
double sngNextLLK = -1e300;
double dblBestLLK = -1e300;
double dblNextLLK = -1e300;
double sumLLK = -1e300;
double sngLLK = -1e300;
double tmpLLK;
for(int32_t j=0; j < nSamples; ++j) {
for(int32_t k=0; k < j; ++k) {
tmpLLK = llks[j*(j+1)/2+k]; // + log_double_prior;
if ( tmpLLK > dblBestLLK ) {
dNext1 = dBest1; dNext2 = dBest2;
dblNextLLK = dblBestLLK;
dBest1 = j; dBest2 = k;
dblBestLLK = tmpLLK;
}
else if ( tmpLLK > dblNextLLK ) {
dNext1 = j; dNext2 = k;
dblNextLLK = tmpLLK;
}
sumLLK = logAdd(sumLLK,tmpLLK + log_double_prior);
}
tmpLLK = llks[j*(j+1)/2+j]; //+ log_single_prior;
if ( tmpLLK > sngBestLLK ) {
sNext = sBest;
sngNextLLK = sngBestLLK;
sBest = j;
sngBestLLK = tmpLLK;
}
else if ( tmpLLK > sngNextLLK ) {
sNext = j;
sngNextLLK = tmpLLK;
}
sumLLK = logAdd(sumLLK,tmpLLK + log_single_prior);
sngLLK = logAdd(sngLLK,tmpLLK + log_single_prior);
}
sBests[i] = sBest;
sngBestLLKs[i] = sngBestLLK;
sNexts[i] = sNext;
sngNextLLKs[i] = sngNextLLK;
dBest1s[i] = dBest1;
dBest2s[i] = dBest2;
dblBestLLKs[i] = dblBestLLK;
dNext1s[i] = dNext1;
dNext2s[i] = dNext2;
dblNextLLKs[i] = dblNextLLK;
sngPPs[i] = exp(sngLLK - sumLLK);
sngOnlyPPs[i] = exp(sngBestLLK + log_single_prior - sngLLK);
sumLLKs[i] = sumLLK;
}
// re-assign sample identities
clustPileup.clear();
clustPileup.resize(nSamples);
int32_t nsingle = 0, namb = 0, nchanged = 0;
for(int32_t i=0; i < scl.nbcs; ++i) {
clusts[i] = -1;
if ( dblBestLLKs[i] > sngBestLLKs[i] + 2 ) { // best call is doublet
// consider as changed only when the assignment category was changed.
if ( types[i] != 1 ) ++nchanged;
types[i] = 1; // doublet
bestPPs[i] = ( dblBestLLKs[i] + log_double_prior - sumLLKs[i] );
jBests[i] = dBest1s[i];
kBests[i] = dBest2s[i];
bestLLKs[i] = dblBestLLKs[i];
if ( dblNextLLKs[i] > sngBestLLKs[i] + 2 ) { // next best is doublet
jNexts[i] = dNext1s[i];
kNexts[i] = dNext2s[i];
nextLLKs[i] = dblNextLLKs[i];
}
else {
jNexts[i] = kNexts[i] = sBests[i]; // next best is singlet
nextLLKs[i] = sngBestLLKs[i];
}
}
else if ( sngBestLLKs[i] > sngNextLLKs[i] + 2 ) { // double call is singlet
if ( ( types[i] != 0 ) || ( jBests[i] != sBests[i] ) || ( kBests[i] != sBests[i] ) )
++nchanged;
types[i] = 0; // singlet
++nsingle;
bestPPs[i] = ( sngBestLLKs[i] + log_single_prior - sumLLKs[i] );
jBests[i] = kBests[i] = sBests[i];
bestLLKs[i] = sngBestLLKs[i];
clusts[i] = jBests[i];
if ( dblBestLLKs[i] > sngNextLLKs[i] + 2 ) { // next best is doublet
jNexts[i] = dBest1s[i];
kNexts[i] = dBest2s[i];
nextLLKs[i] = dblBestLLKs[i];
}
else {
jNexts[i] = kNexts[i] = sNexts[i]; // next best is also singlet
nextLLKs[i] = sngNextLLKs[i];
}
}
else { // ambiguous calls, use singlet as the best call
if ( types[i] != 2 ) ++nchanged;
types[i] = 2; // ambiguous
++namb;
bestPPs[i] = ( sngBestLLKs[i] + log_single_prior - sumLLKs[i] );
jBests[i] = kBests[i] = sBests[i];
bestLLKs[i] = sngBestLLKs[i];
if ( dblBestLLKs[i] > sngNextLLKs[i] + 2 ) {
jNexts[i] = dBest1s[i];
kNexts[i] = dBest2s[i];
nextLLKs[i] = dblNextLLKs[i];
}
else {
jNexts[i] = kNexts[i] = sNexts[i];
nextLLKs[i] = sngNextLLKs[i];
}
}
// old criteria
//if ( bestPPs[i] < 0.8 ) ++namb;
//else if ( jBests[i] == kBests[i] ) ++nsingle;
std::map<int32_t,snp_droplet_pileup*>::const_iterator it = cell_snp_plps[i].begin();
while(it != cell_snp_plps[i].end()) {
if ( ( jBests[i] == kBests[i] ) && ( types[i] == 0 ) ) {
clustPileup[jBests[i]][it->first].merge(*it->second);
}
++it;
}
}
notice("Refining per-cluster genotype likelihoods.... %d singlets, %d doublets, %d ambiguous, and %d changed", nsingle, scl.nbcs-nsingle-namb, namb, nchanged);
if ( nchanged == 0 ) {
notice("No more changes in cluster assginment and singlet identities. Finishing iterations early");
break;
}
}
htsFile* vc1 = hts_open((outPrefix+".clust1.vcf.gz").c_str(),"wz");
hprintf(vc1,"##fileformat=VCFv4.2\n");
hprintf(vc1,"##fileDate=%04d%02d%02d\n",1970+ltm->tm_year,1+ltm->tm_mon,ltm->tm_mday);
hprintf(vc1,"##source=cramore-freemuxlet\n");
for(int32_t i=0; i < (int32_t)scl.rid2chr.size(); ++i)
hprintf(vc1, "##contig=<ID=%s>\n", scl.rid2chr[i].c_str());
hprintf(vc1,"##INFO=<ID=AF,Number=A,Type=Float,Description=\"Allele Frequency\">\n");
hprintf(vc1,"##FORMAT=<ID=GT,Number=1,Type=String,Description=\"Genotype\">\n");
hprintf(vc1,"##FORMAT=<ID=GQ,Number=1,Type=Integer,Description=\"Phred-scale Genotype Quality\">\n");
hprintf(vc1,"##FORMAT=<ID=DP,Number=1,Type=Integer,Description=\"Read Depth\">\n");
hprintf(vc1,"##FORMAT=<ID=AD,Number=R,Type=Integer,Description=\"Allelic Read Depth\">\n");
hprintf(vc1,"##FORMAT=<ID=PL,Number=G,Type=Integer,Description=\"Phred-scale genotype likelihood\">\n");
hprintf(vc1,"##FORMAT=<ID=GP,Number=G,Type=Float,Description=\"Posterior probability using pooled allele frequencies\">\n");
hprintf(vc1,"#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT");
for(int32_t i=0; i < nSamples; ++i) hprintf(vc1, "\tCLUST%d", i);
hprintf(vc1, "\n");
for(int32_t v=0; v < scl.nsnps; ++v) {
if ( !snps_observed[v] ) continue;
sc_snp_t& s = scl.snps[v];
hprintf(vc1,"%s\t%d\t.\t%c\t%c\t.\tPASS\tAF=%.5lf\tGT:GQ:DP:AD:PL:GP",scl.rid2chr[s.rid].c_str(),s.pos,s.ref,s.alt,s.af);
double gps[3] = { (1.-s.af)*(1.-s.af), 2. * s.af* (1.-s.af), s.af * s.af };
double pps[3], sumPP;
int32_t pls[3];
int bestG, gq;
for(int32_t i=0; i < nSamples; ++i) {
snp_droplet_pileup& sdp = clustPileup[i][v];
double maxGL = sdp.gls[0];
if ( maxGL < sdp.gls[4] ) maxGL = sdp.gls[4];
if ( maxGL < sdp.gls[8] ) maxGL = sdp.gls[8];
pls[0] = (int32_t)(-10.0*log10(sdp.gls[0]/maxGL));
pls[1] = (int32_t)(-10.0*log10(sdp.gls[4]/maxGL));
pls[2] = (int32_t)(-10.0*log10(sdp.gls[8]/maxGL));
pps[0] = gps[0] * ( sdp.gls[0] / maxGL ) + 1e-100;
pps[1] = gps[1] * ( sdp.gls[4] / maxGL ) + 1e-100;
pps[2] = gps[2] * ( sdp.gls[8] / maxGL ) + 1e-100;
sumPP = pps[0] + pps[1] + pps[2];
pps[0] /= sumPP;
pps[1] /= sumPP;
pps[2] /= sumPP;
bestG = ( pps[0] > pps[1] ) ? ( pps[0] > pps[2] ? 0 : 2 ) : ( pps[1] > pps[2] ? 1 : 2 );
gq = (int32_t)(-10*log10(1.0-pps[bestG]+1e-100));
if ( gq > 255 ) gq = 255;
hprintf(vc1,"\t%d/%d:%d:%d:%d,%d:%d,%d,%d:%.3lg,%.3lg,%.3lg", bestG == 2 ? 1 : 0, bestG > 0 ? 1 : 0, gq, sdp.nreads, sdp.nref, sdp.nalt, pls[0], pls[1], pls[2], pps[0], pps[1], pps[2]);
}
hprintf(vc1,"\n");
}
hts_close(vc1);
htsFile* wc1 = hts_open((outPrefix+".clust1.samples.gz").c_str(),"wz");
hprintf(wc1, "INT_ID\tBARCODE\tNUM.SNPS\tNUM.READS\tDROPLET.TYPE\tBEST.GUESS\tBEST.LLK\tNEXT.GUESS\tNEXT.LLK\tDIFF.LLK.BEST.NEXT\tBEST.POSTERIOR\tSNG.POSTERIOR\tSNG.BEST.GUESS\tSNG.BEST.LLK\tSNG.NEXT.GUESS\tSNG.NEXT.LLK\tSNG.ONLY.POSTERIOR\tDBL.BEST.GUESS\tDBL.BEST.LLK\tDIFF.LLK.SNG.DBL\n");
for(int32_t i=0; i < scl.nbcs; ++i) {
hprintf(wc1, "%d\t%s\t%d\t%d\t%s\t%d,%d\t%.2lf\t%d,%d\t%.2lf\t%.2lf\t%.5lf\t%.2lg\t%d\t%.2lf\t%d\t%.2lf\t%.5lf\t%d,%d\t%.2lf\t%.2lf\n", i, scl.bcs[i].c_str(), nSNPs[i], nReads[i], (types[i] == 2) ? "AMB" : ((types[i] == 0) ? "SNG" : "DBL"), jBests[i], kBests[i], bestLLKs[i], jNexts[i], kNexts[i], nextLLKs[i], bestLLKs[i]-nextLLKs[i], bestPPs[i], sngPPs[i], sBests[i], sngBestLLKs[i], sNexts[i], sngNextLLKs[i], sngOnlyPPs[i], dBest1s[i], dBest2s[i], dblBestLLKs[i], sngBestLLKs[i]-dblBestLLKs[i]);
}
hts_close(wc1);
return 0;
}