-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathREADME.Rmd
254 lines (162 loc) · 6.8 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
---
output: github_document
editor_options:
chunk_output_type: console
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
<!-- badges: start -->
[![CRAN status](https://www.r-pkg.org/badges/version/ceramic)](https://CRAN.R-project.org/package=ceramic)
[![R-CMD-check](https://github.com/hypertidy/ceramic/actions/workflows/R-CMD-check.yaml/badge.svg)](https://github.com/hypertidy/ceramic/actions/workflows/R-CMD-check.yaml)
<!-- badges: end -->
```{r setup, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "100%",
dev = "png"
#, dev.args = list( jpeg = list(quality =50))
)
options(warn = -1)
```
# ceramic
The goal of ceramic is to obtain web map tiles. Use a spatial object to define the region of interest.
```{r extent1}
library(ceramic)
roi <- ext(100, 160, -50, 10)
im <- cc_location(roi)
plotRGB(im)
```
The terra package is always loaded by ceramic, so we can assume the use of its functions, ceramic accepts a wider range of inputs than terra does however.
We can use wk, geos, terra, raster, sp, sf, or stars objects, or an input lon,lat point
and a buffer (in metres) to define an extent. This provides a very easy way to
obtain imagery or elevation data for any almost any region using our own data.
```{r extent2, fig.width=8, fig.height=10}
sql <- "SELECT shapeGroup FROM geoBoundariesCGAZ_ADM0 WHERE shapeGroup IN ('BOL')"
dsn <- "/vsizip//vsicurl/https://github.com/wmgeolab/geoBoundaries/raw/main/releaseData/CGAZ/geoBoundariesCGAZ_ADM0.zip"
bol <- vect(dsn, query = sql)
im <- cc_location(bol)
plotRGB(im)
```
Even if the data uses a map projection it will be converted into a region to match the Mercator extents used by Mapbox image servers.
```{r warn, include = FALSE}
options(warn = -1)
```
```{r nz-spData, include = FALSE}
data("nz", package = "spData")
library(sf)
im_nz2 <- cc_location(nz)
plotRGB(im_nz2)
plot(st_transform(nz, crs(im_nz2))[0], add = TRUE, col = rainbow(nrow(nz), alpha = 0.5))
```
There are basic heuristics to decide if data is projected or just in "longitude,latitude" in the usual way.
Raster elevation data is also available.
```{r}
north <- nz[nz$Island == "North", ]
dem_nz <- cc_elevation(north, type = "elevation-tiles-prod" )
## plot elevation data for NZ north
dem_nz[!dem_nz > 0] <- NA
plot(dem_nz, col = grey.colors(128))
plot(st_transform(st_cast(north, "MULTILINESTRING")["Name"], terra::crs(dem_nz)), add = TRUE, lwd = 5)
```
## I thought you said *tiles*?
Indeed, here's a function called `read_tiles()`, it shares the same interface as `get_tiles()`.
```{r read-tiles}
read_tiles()
```
Note that, the `cc_location()` and `cc_elevation()` functions no longer use tiles, they read directly from the internet using GDAL and are not related to the tile download facilities.
But, they used to run `get_tiles()` behind the scenes. The separation is still a little unfinished, but I want ceramic to have separation of loading data from the internet with downloading tiles.
This function and its counterparts `get_tiles_zoom()`, `get_tiles_dim()` and `get_tiles_buffer()` will *only download files*.
```{r tiles}
tile_summ <- get_tiles_zoom(north, zoom = 8)
length(tile_summ$files)
str(tile_summ$tiles)
(tile_rect <- tiles_to_polygon(ceramic_tiles(zoom = 8)))
```
This is really for expert use when you want to control the downloaded tile files yourself directly.
## Providers
The default map provider is [Mapbox](https://www.mapbox.com/), but ceramic is written for general usage and also provides access to the [joerd AWS tiles](https://github.com/tilezen/joerd/) via the `type = "elevation-tiles-prod"` argument.
```{r}
pt <- cbind(175.6082, -37.994)
nz_z12 <- cc_location(pt, buffer = 100000, type = "elevation-tiles-prod")
```
```{r, eval=FALSE, include = FALSE}
north_carolina <- sf::read_sf(system.file("gpkg/nc.gpkg", package = "sf", mustWork = TRUE))
nc_image <- cc_location(north_carolina)
rowan_dem <- cc_elevation(dplyr::filter(north_carolina, NAME == "Rowan"))
rowan_dem
```
## Installation
Install ceramic from CRAN with:
```R
install.packages("ceramic")
```
You can install the development version of ceramic from Github.
```R
## install.packages("remotes")
remotes::install_github("hypertidy/ceramic")
```
Set your mapbox API key with
```R
Sys.setenv(MAPBOX_API_KEY = "<yourkey>")
```
## Example
This complete example gets tiled imagery that we can use as real data.
The code here
- generates a bounding box in longitude-latitude
- reads the raster data using GDAL
then we look at the actual tiles involved,
- uses [slippymath](https://CRAN.r-project.org/package=slippymath) to
find sensible tiles for the region
- downloads them to a local cache
- summarizes the tiles as a spatial (wk) object
```{r example01}
library(ceramic)
## a point in longlat, and a buffer with in metres
pt <- cbind(136, -34)
im <- cc_location(pt, buffer = c(1e6, 5e5), type = "mapbox.satellite")
op <- par(bg = "black")
plotRGB(im)
## get the approximately matching tiles (zoom is magic here, it's all wrapped - needs thought)
tileset <- get_tiles(pt, buffer = c(1e6, 5e5))
tiles <- ceramic_tiles(zoom = tileset$tiles$zoom, type = "mapbox.satellite")
plot(tiles_to_polygon(tiles), add = TRUE, border = "white")
middle <- function(x, y) {
x + (y - x)/2
}
text(middle(tiles$xmin, tiles$xmax), middle(tiles$ymin, tiles$ymax), lab = sprintf("[%i,%i]", tiles$tile_x, tiles$tile_y),
col = "yellow")
par(op)
```
## Tasmap maps
```{r tasmap}
library(ceramic)
library(terra)
template <- rast(ext(527358, 527880, 5252204, 5252704), res = .3, crs = "EPSG:32755")
ortho <- cc_location(template, type = "tasmap_orthophoto")
plot(ortho)
plot(cc_location(template, type = "tasmap_street"))
plot(cc_location(template, type = "tasmap_tasmapraster"))
plot(cc_location(template, type = "tasmap_hillshade"))
plot(cc_location(template, type = "tasmap_hillshadegrey"))
plot(cc_location(template, type = "tasmap_esgismapbookpublic")) ## nope
plot(cc_location(template, type = "tasmap_topographic"))
plot(cc_location(template, type = "tasmap_tasmap25k")) ## also 100k, 250k, 500k
```
```{r smash,include=FALSE}
quantize_figs <- function(dir = "man/figures") {
f <- fs::dir_ls(dir, regexp = "png$")
for (i in seq_along(f)) {
tf <- tempfile(fileext = ".png")
im <- magick::image_read(f[i])
magick::image_write(magick::image_quantize(im), tf)
## I don't know how to properly unlink the original pointer, this just a guess (not sure it matters)
rm(im)
fs::file_delete(f[i])
fs::file_move(tf, f[i])
}
}
quantize_figs()
```
---
Please note that the 'ceramic' project is released with a [Contributor Code of Conduct](https://github.com/hypertidy/ceramic/blob/master/CODE_OF_CONDUCT.md). By contributing to this project, you agree to abide by its terms.