-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathsynthetic_demo.py
143 lines (114 loc) · 3.83 KB
/
synthetic_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import random
import pandas as pd
import numpy as np
import tensorflow as tf
from keras import backend as K
from keras import metrics
from keras.optimizers import Adam
from keras.initializers import VarianceScaling
from keras.layers import Input, Dense
from keras.models import Model
from mmoe import MMoE
SEED = 1
# Fix numpy seed for reproducibility
np.random.seed(SEED)
# Fix random seed for reproducibility
random.seed(SEED)
# Fix TensorFlow graph-level seed for reproducibility
tf.set_random_seed(SEED)
tf_session = tf.Session(graph=tf.get_default_graph())
K.set_session(tf_session)
def data_preparation():
# Synthetic data parameters
num_dimension = 100
num_row = 12000
c = 0.3
rho = 0.8
m = 5
# Initialize vectors u1, u2, w1, and w2 according to the paper
mu1 = np.random.normal(size=num_dimension)
mu1 = (mu1 - np.mean(mu1)) / (np.std(mu1) * np.sqrt(num_dimension))
mu2 = np.random.normal(size=num_dimension)
mu2 -= mu2.dot(mu1) * mu1
mu2 /= np.linalg.norm(mu2)
w1 = c * mu1
w2 = c * (rho * mu1 + np.sqrt(1. - rho ** 2) * mu2)
# Feature and label generation
alpha = np.random.normal(size=m)
beta = np.random.normal(size=m)
y0 = []
y1 = []
X = []
for i in range(num_row):
x = np.random.normal(size=num_dimension)
X.append(x)
num1 = w1.dot(x)
num2 = w2.dot(x)
comp1, comp2 = 0.0, 0.0
for j in range(m):
comp1 += np.sin(alpha[j] * num1 + beta[j])
comp2 += np.sin(alpha[j] * num2 + beta[j])
y0.append(num1 + comp1 + np.random.normal(scale=0.1, size=1))
y1.append(num2 + comp2 + np.random.normal(scale=0.1, size=1))
X = np.array(X)
data = pd.DataFrame(
data=X,
index=range(X.shape[0]),
columns=['x{}'.format(it) for it in range(X.shape[1])]
)
train_data = data.iloc[0:10000]
train_label = [y0[0:10000], y1[0:10000]]
validation_data = data.iloc[10000:11000]
validation_label = [y0[10000:11000], y1[10000:11000]]
test_data = data.iloc[11000:]
test_label = [y0[11000:], y1[11000:]]
return train_data, train_label, validation_data, validation_label, test_data, test_label
def main():
# Load the data
train_data, train_label, validation_data, validation_label, test_data, test_label = data_preparation()
num_features = train_data.shape[1]
print('Training data shape = {}'.format(train_data.shape))
print('Validation data shape = {}'.format(validation_data.shape))
print('Test data shape = {}'.format(test_data.shape))
# Set up the input layer
input_layer = Input(shape=(num_features,))
# Set up MMoE layer
mmoe_layers = MMoE(
units=16,
num_experts=8,
num_tasks=2
)(input_layer)
output_layers = []
output_info = ['y0', 'y1']
# Build tower layer from MMoE layer
for index, task_layer in enumerate(mmoe_layers):
tower_layer = Dense(
units=8,
activation='relu',
kernel_initializer=VarianceScaling())(task_layer)
output_layer = Dense(
units=1,
name=output_info[index],
activation='linear',
kernel_initializer=VarianceScaling())(tower_layer)
output_layers.append(output_layer)
# Compile model
model = Model(inputs=[input_layer], outputs=output_layers)
learning_rates = [1e-4, 1e-3, 1e-2]
adam_optimizer = Adam(lr=learning_rates[0])
model.compile(
loss={'y0': 'mean_squared_error', 'y1': 'mean_squared_error'},
optimizer=adam_optimizer,
metrics=[metrics.mae]
)
# Print out model architecture summary
model.summary()
# Train the model
model.fit(
x=train_data,
y=train_label,
validation_data=(validation_data, validation_label),
epochs=100
)
if __name__ == '__main__':
main()