forked from macanv/BERT-BiLSTM-CRF-NER
-
Notifications
You must be signed in to change notification settings - Fork 0
/
terminal_predict.py
342 lines (297 loc) · 11.2 KB
/
terminal_predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
# encoding=utf-8
"""
基于命令行的在线预测方法
@Author: Macan ([email protected])
"""
import tensorflow as tf
import numpy as np
import codecs
import pickle
import os
from datetime import datetime
from bert_base.train.models import create_model, InputFeatures
from bert_base.bert import tokenization, modeling
from bert_base.train.train_helper import get_args_parser
args = get_args_parser()
model_dir = r'C:\Users\C\Documents\Tencent Files\389631699\FileRecv\semi_corpus_people_2014'
bert_dir = 'F:\chinese_L-12_H-768_A-12'
is_training=False
use_one_hot_embeddings=False
batch_size=1
gpu_config = tf.ConfigProto()
gpu_config.gpu_options.allow_growth = True
sess=tf.Session(config=gpu_config)
model=None
global graph
input_ids_p, input_mask_p, label_ids_p, segment_ids_p = None, None, None, None
print('checkpoint path:{}'.format(os.path.join(model_dir, "checkpoint")))
if not os.path.exists(os.path.join(model_dir, "checkpoint")):
raise Exception("failed to get checkpoint. going to return ")
# 加载label->id的词典
with codecs.open(os.path.join(model_dir, 'label2id.pkl'), 'rb') as rf:
label2id = pickle.load(rf)
id2label = {value: key for key, value in label2id.items()}
with codecs.open(os.path.join(model_dir, 'label_list.pkl'), 'rb') as rf:
label_list = pickle.load(rf)
num_labels = len(label_list) + 1
graph = tf.get_default_graph()
with graph.as_default():
print("going to restore checkpoint")
#sess.run(tf.global_variables_initializer())
input_ids_p = tf.placeholder(tf.int32, [batch_size, args.max_seq_length], name="input_ids")
input_mask_p = tf.placeholder(tf.int32, [batch_size, args.max_seq_length], name="input_mask")
bert_config = modeling.BertConfig.from_json_file(os.path.join(bert_dir, 'bert_config.json'))
(total_loss, logits, trans, pred_ids) = create_model(
bert_config=bert_config, is_training=False, input_ids=input_ids_p, input_mask=input_mask_p, segment_ids=None,
labels=None, num_labels=num_labels, use_one_hot_embeddings=False, dropout_rate=1.0)
saver = tf.train.Saver()
saver.restore(sess, tf.train.latest_checkpoint(model_dir))
tokenizer = tokenization.FullTokenizer(
vocab_file=os.path.join(bert_dir, 'vocab.txt'), do_lower_case=args.do_lower_case)
def predict_online():
"""
do online prediction. each time make prediction for one instance.
you can change to a batch if you want.
:param line: a list. element is: [dummy_label,text_a,text_b]
:return:
"""
def convert(line):
feature = convert_single_example(0, line, label_list, args.max_seq_length, tokenizer, 'p')
input_ids = np.reshape([feature.input_ids],(batch_size, args.max_seq_length))
input_mask = np.reshape([feature.input_mask],(batch_size, args.max_seq_length))
segment_ids = np.reshape([feature.segment_ids],(batch_size, args.max_seq_length))
label_ids =np.reshape([feature.label_ids],(batch_size, args.max_seq_length))
return input_ids, input_mask, segment_ids, label_ids
global graph
with graph.as_default():
print(id2label)
while True:
print('input the test sentence:')
sentence = str(input())
start = datetime.now()
if len(sentence) < 2:
print(sentence)
continue
sentence = tokenizer.tokenize(sentence)
# print('your input is:{}'.format(sentence))
input_ids, input_mask, segment_ids, label_ids = convert(sentence)
feed_dict = {input_ids_p: input_ids,
input_mask_p: input_mask}
# run session get current feed_dict result
pred_ids_result = sess.run([pred_ids], feed_dict)
pred_label_result = convert_id_to_label(pred_ids_result, id2label)
print(pred_label_result)
#todo: 组合策略
result = strage_combined_link_org_loc(sentence, pred_label_result[0])
print('time used: {} sec'.format((datetime.now() - start).total_seconds()))
def convert_id_to_label(pred_ids_result, idx2label):
"""
将id形式的结果转化为真实序列结果
:param pred_ids_result:
:param idx2label:
:return:
"""
result = []
for row in range(batch_size):
curr_seq = []
for ids in pred_ids_result[row][0]:
if ids == 0:
break
curr_label = idx2label[ids]
if curr_label in ['[CLS]', '[SEP]']:
continue
curr_seq.append(curr_label)
result.append(curr_seq)
return result
def strage_combined_link_org_loc(tokens, tags):
"""
组合策略
:param pred_label_result:
:param types:
:return:
"""
def print_output(data, type):
line = []
line.append(type)
for i in data:
line.append(i.word)
print(', '.join(line))
params = None
eval = Result(params)
if len(tokens) > len(tags):
tokens = tokens[:len(tags)]
person, loc, org = eval.get_result(tokens, tags)
print_output(loc, 'LOC')
print_output(person, 'PER')
print_output(org, 'ORG')
def convert_single_example(ex_index, example, label_list, max_seq_length, tokenizer, mode):
"""
将一个样本进行分析,然后将字转化为id, 标签转化为id,然后结构化到InputFeatures对象中
:param ex_index: index
:param example: 一个样本
:param label_list: 标签列表
:param max_seq_length:
:param tokenizer:
:param mode:
:return:
"""
label_map = {}
# 1表示从1开始对label进行index化
for (i, label) in enumerate(label_list, 1):
label_map[label] = i
# 保存label->index 的map
if not os.path.exists(os.path.join(model_dir, 'label2id.pkl')):
with codecs.open(os.path.join(model_dir, 'label2id.pkl'), 'wb') as w:
pickle.dump(label_map, w)
tokens = example
# tokens = tokenizer.tokenize(example.text)
# 序列截断
if len(tokens) >= max_seq_length - 1:
tokens = tokens[0:(max_seq_length - 2)] # -2 的原因是因为序列需要加一个句首和句尾标志
ntokens = []
segment_ids = []
label_ids = []
ntokens.append("[CLS]") # 句子开始设置CLS 标志
segment_ids.append(0)
# append("O") or append("[CLS]") not sure!
label_ids.append(label_map["[CLS]"]) # O OR CLS 没有任何影响,不过我觉得O 会减少标签个数,不过拒收和句尾使用不同的标志来标注,使用LCS 也没毛病
for i, token in enumerate(tokens):
ntokens.append(token)
segment_ids.append(0)
label_ids.append(0)
ntokens.append("[SEP]") # 句尾添加[SEP] 标志
segment_ids.append(0)
# append("O") or append("[SEP]") not sure!
label_ids.append(label_map["[SEP]"])
input_ids = tokenizer.convert_tokens_to_ids(ntokens) # 将序列中的字(ntokens)转化为ID形式
input_mask = [1] * len(input_ids)
# padding, 使用
while len(input_ids) < max_seq_length:
input_ids.append(0)
input_mask.append(0)
segment_ids.append(0)
# we don't concerned about it!
label_ids.append(0)
ntokens.append("**NULL**")
# label_mask.append(0)
# print(len(input_ids))
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
assert len(label_ids) == max_seq_length
# assert len(label_mask) == max_seq_length
# 结构化为一个类
feature = InputFeatures(
input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids,
label_ids=label_ids,
# label_mask = label_mask
)
return feature
class Pair(object):
def __init__(self, word, start, end, type, merge=False):
self.__word = word
self.__start = start
self.__end = end
self.__merge = merge
self.__types = type
@property
def start(self):
return self.__start
@property
def end(self):
return self.__end
@property
def merge(self):
return self.__merge
@property
def word(self):
return self.__word
@property
def types(self):
return self.__types
@word.setter
def word(self, word):
self.__word = word
@start.setter
def start(self, start):
self.__start = start
@end.setter
def end(self, end):
self.__end = end
@merge.setter
def merge(self, merge):
self.__merge = merge
@types.setter
def types(self, type):
self.__types = type
def __str__(self) -> str:
line = []
line.append('entity:{}'.format(self.__word))
line.append('start:{}'.format(self.__start))
line.append('end:{}'.format(self.__end))
line.append('merge:{}'.format(self.__merge))
line.append('types:{}'.format(self.__types))
return '\t'.join(line)
class Result(object):
def __init__(self, config):
self.config = config
self.person = []
self.loc = []
self.org = []
self.others = []
def get_result(self, tokens, tags, config=None):
# 先获取标注结果
self.result_to_json(tokens, tags)
return self.person, self.loc, self.org
def result_to_json(self, string, tags):
"""
将模型标注序列和输入序列结合 转化为结果
:param string: 输入序列
:param tags: 标注结果
:return:
"""
item = {"entities": []}
entity_name = ""
entity_start = 0
idx = 0
last_tag = ''
for char, tag in zip(string, tags):
if tag[0] == "S":
self.append(char, idx, idx+1, tag[2:])
item["entities"].append({"word": char, "start": idx, "end": idx+1, "type":tag[2:]})
elif tag[0] == "B":
if entity_name != '':
self.append(entity_name, entity_start, idx, last_tag[2:])
item["entities"].append({"word": entity_name, "start": entity_start, "end": idx, "type": last_tag[2:]})
entity_name = ""
entity_name += char
entity_start = idx
elif tag[0] == "I":
entity_name += char
elif tag[0] == "O":
if entity_name != '':
self.append(entity_name, entity_start, idx, last_tag[2:])
item["entities"].append({"word": entity_name, "start": entity_start, "end": idx, "type": last_tag[2:]})
entity_name = ""
else:
entity_name = ""
entity_start = idx
idx += 1
last_tag = tag
if entity_name != '':
self.append(entity_name, entity_start, idx, last_tag[2:])
item["entities"].append({"word": entity_name, "start": entity_start, "end": idx, "type": last_tag[2:]})
return item
def append(self, word, start, end, tag):
if tag == 'LOC':
self.loc.append(Pair(word, start, end, 'LOC'))
elif tag == 'PER':
self.person.append(Pair(word, start, end, 'PER'))
elif tag == 'ORG':
self.org.append(Pair(word, start, end, 'ORG'))
else:
self.others.append(Pair(word, start, end, tag))
if __name__ == "__main__":
predict_online()