forked from open-mmlab/mmcv
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_optflow.py
218 lines (195 loc) · 7.98 KB
/
test_optflow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
# flake8: noqa
import os
import os.path as osp
import tempfile
import mmcv
import numpy as np
import pytest
from numpy.testing import assert_array_equal, assert_array_almost_equal
def test_flowread():
flow_shape = (60, 80, 2)
# read .flo file
flow = mmcv.flowread(osp.join(osp.dirname(__file__), 'data/optflow.flo'))
assert flow.shape == flow_shape
# pseudo read
flow_same = mmcv.flowread(flow)
assert_array_equal(flow, flow_same)
# read quantized flow concatenated vertically
flow = mmcv.flowread(
osp.join(osp.dirname(__file__), 'data/optflow_concat0.jpg'),
quantize=True,
denorm=True)
assert flow.shape == flow_shape
# read quantized flow concatenated horizontally
flow = mmcv.flowread(
osp.join(osp.dirname(__file__), 'data/optflow_concat1.jpg'),
quantize=True,
concat_axis=1,
denorm=True)
assert flow.shape == flow_shape
# test exceptions
notflow_file = osp.join(osp.dirname(__file__), 'data/color.jpg')
with pytest.raises(TypeError):
mmcv.flowread(1)
with pytest.raises(IOError):
mmcv.flowread(notflow_file)
with pytest.raises(IOError):
mmcv.flowread(notflow_file, quantize=True)
with pytest.raises(ValueError):
mmcv.flowread(np.zeros((100, 100, 1)))
def test_flowwrite():
flow = np.random.rand(100, 100, 2).astype(np.float32)
# write to a .flo file
_, filename = tempfile.mkstemp()
mmcv.flowwrite(flow, filename)
flow_from_file = mmcv.flowread(filename)
assert_array_equal(flow, flow_from_file)
os.remove(filename)
# write to two .jpg files
tmp_filename = osp.join(tempfile.gettempdir(), 'mmcv_test_flow.jpg')
for concat_axis in range(2):
mmcv.flowwrite(
flow, tmp_filename, quantize=True, concat_axis=concat_axis)
shape = (200, 100) if concat_axis == 0 else (100, 200)
assert osp.isfile(tmp_filename)
assert mmcv.imread(tmp_filename, flag='unchanged').shape == shape
os.remove(tmp_filename)
# test exceptions
with pytest.raises(AssertionError):
mmcv.flowwrite(flow, tmp_filename, quantize=True, concat_axis=2)
def test_quantize_flow():
flow = (np.random.rand(10, 8, 2).astype(np.float32) - 0.5) * 15
max_val = 5.0
dx, dy = mmcv.quantize_flow(flow, max_val=max_val, norm=False)
ref = np.zeros_like(flow, dtype=np.uint8)
for i in range(ref.shape[0]):
for j in range(ref.shape[1]):
for k in range(ref.shape[2]):
val = flow[i, j, k] + max_val
val = min(max(val, 0), 2 * max_val)
ref[i, j, k] = min(np.floor(255 * val / (2 * max_val)), 254)
assert_array_equal(dx, ref[..., 0])
assert_array_equal(dy, ref[..., 1])
max_val = 0.5
dx, dy = mmcv.quantize_flow(flow, max_val=max_val, norm=True)
ref = np.zeros_like(flow, dtype=np.uint8)
for i in range(ref.shape[0]):
for j in range(ref.shape[1]):
for k in range(ref.shape[2]):
scale = flow.shape[1] if k == 0 else flow.shape[0]
val = flow[i, j, k] / scale + max_val
val = min(max(val, 0), 2 * max_val)
ref[i, j, k] = min(np.floor(255 * val / (2 * max_val)), 254)
assert_array_equal(dx, ref[..., 0])
assert_array_equal(dy, ref[..., 1])
def test_dequantize_flow():
dx = np.random.randint(256, size=(10, 8), dtype=np.uint8)
dy = np.random.randint(256, size=(10, 8), dtype=np.uint8)
max_val = 5.0
flow = mmcv.dequantize_flow(dx, dy, max_val=max_val, denorm=False)
ref = np.zeros_like(flow, dtype=np.float32)
for i in range(ref.shape[0]):
for j in range(ref.shape[1]):
ref[i, j, 0] = float(dx[i, j] + 0.5) * 2 * max_val / 255 - max_val
ref[i, j, 1] = float(dy[i, j] + 0.5) * 2 * max_val / 255 - max_val
assert_array_almost_equal(flow, ref)
max_val = 0.5
flow = mmcv.dequantize_flow(dx, dy, max_val=max_val, denorm=True)
h, w = dx.shape
ref = np.zeros_like(flow, dtype=np.float32)
for i in range(ref.shape[0]):
for j in range(ref.shape[1]):
ref[i, j,
0] = (float(dx[i, j] + 0.5) * 2 * max_val / 255 - max_val) * w
ref[i, j,
1] = (float(dy[i, j] + 0.5) * 2 * max_val / 255 - max_val) * h
assert_array_almost_equal(flow, ref)
def test_flow2rgb():
flow = np.array(
[[[0, 0], [0.5, 0.5], [1, 1], [2, 1], [3, np.inf]]], dtype=np.float32)
flow_img = mmcv.flow2rgb(flow)
# yapf: disable
assert_array_almost_equal(
flow_img,
np.array([[[1., 1., 1.],
[1., 0.826074731, 0.683772236],
[1., 0.652149462, 0.367544472],
[1., 0.265650552, 5.96046448e-08],
[0., 0., 0.]]],
dtype=np.float32))
# yapf: enable
def test_make_color_wheel():
default_color_wheel = mmcv.make_color_wheel()
color_wheel = mmcv.make_color_wheel([2, 2, 2, 2, 2, 2])
# yapf: disable
assert_array_equal(default_color_wheel, np.array(
[[1. , 0. , 0. ],
[1. , 0.06666667, 0. ],
[1. , 0.13333334, 0. ],
[1. , 0.2 , 0. ],
[1. , 0.26666668, 0. ],
[1. , 0.33333334, 0. ],
[1. , 0.4 , 0. ],
[1. , 0.46666667, 0. ],
[1. , 0.53333336, 0. ],
[1. , 0.6 , 0. ],
[1. , 0.6666667 , 0. ],
[1. , 0.73333335, 0. ],
[1. , 0.8 , 0. ],
[1. , 0.8666667 , 0. ],
[1. , 0.93333334, 0. ],
[1. , 1. , 0. ],
[0.8333333 , 1. , 0. ],
[0.6666667 , 1. , 0. ],
[0.5 , 1. , 0. ],
[0.33333334, 1. , 0. ],
[0.16666667, 1. , 0. ],
[0. , 1. , 0. ],
[0. , 1. , 0.25 ],
[0. , 1. , 0.5 ],
[0. , 1. , 0.75 ],
[0. , 1. , 1. ],
[0. , 0.90909094, 1. ],
[0. , 0.8181818 , 1. ],
[0. , 0.72727275, 1. ],
[0. , 0.6363636 , 1. ],
[0. , 0.54545456, 1. ],
[0. , 0.45454547, 1. ],
[0. , 0.36363637, 1. ],
[0. , 0.27272728, 1. ],
[0. , 0.18181819, 1. ],
[0. , 0.09090909, 1. ],
[0. , 0. , 1. ],
[0.07692308, 0. , 1. ],
[0.15384616, 0. , 1. ],
[0.23076923, 0. , 1. ],
[0.30769232, 0. , 1. ],
[0.3846154 , 0. , 1. ],
[0.46153846, 0. , 1. ],
[0.53846157, 0. , 1. ],
[0.61538464, 0. , 1. ],
[0.6923077 , 0. , 1. ],
[0.7692308 , 0. , 1. ],
[0.84615386, 0. , 1. ],
[0.9230769 , 0. , 1. ],
[1. , 0. , 1. ],
[1. , 0. , 0.8333333 ],
[1. , 0. , 0.6666667 ],
[1. , 0. , 0.5 ],
[1. , 0. , 0.33333334],
[1. , 0. , 0.16666667]], dtype=np.float32))
assert_array_equal(
color_wheel,
np.array([[1., 0. , 0. ],
[1. , 0.5, 0. ],
[1. , 1. , 0. ],
[0.5, 1. , 0. ],
[0. , 1. , 0. ],
[0. , 1. , 0.5],
[0. , 1. , 1. ],
[0. , 0.5, 1. ],
[0. , 0. , 1. ],
[0.5, 0. , 1. ],
[1. , 0. , 1. ],
[1. , 0. , 0.5]], dtype=np.float32))
# yapf: enable